Organic signatures in pleistocene cherts from lake magadi (Kenya) - Implications for early Earth hydrothermal deposits

Manuel Reinhardt, Walter Goetz, Jan Peter Duda, Christine Marcelle Heim, Joachim Reitner, Volker Thiel

Research output: Contribution to journalArticle

Abstract

Organic matter in Archean hydrothermal cherts may provide an important archive for molecular traces of the earliest life on Earth. The geobiological interpretation of this archive, however, requires a sound understanding of organic matter preservation and alteration in hydrothermal systems. Here we report on organic matter (including molecular biosignatures) enclosed in hydrothermally influenced cherts of the Pleistocene Lake Magadi (Kenya; High Magadi Beds and Green Beds). The Magadi cherts contain low organic carbon (< 0.4 wt %) that occurs in the form of finely dispersed clots, layers, or encapsulated within microscopic carbonate rhombs. Both extractable (bitumen) and non-extractable organic matter (kerogen) were analyzed. The bitumens contain immature "biolipids" like glycerol mono- and diethers (e.g., archaeol and extended archaeol), fatty acids, and alcohols indicative for, inter alia, thermophilic cyanobacteria, sulfate reducers, and haloarchaea. However, co-occurring "geolipids" such as n-alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) indicate that a fraction of the bitumen has been thermally altered to early or peak oil window maturity. This more mature fraction likely originated from defunctionalization of dissolved organic matter and/or hydrothermal petroleum formation at places of higher thermal flux. Like the bitumens, the kerogens also show variations in thermal maturities, which can partly be explained by admixture of thermally pre-altered macromolecules. However, findings of archaea-derived isoprenoid moieties (C20 and C25 chains) in kerogen pyrolysates indicate rapid sequestration of some archaeal lipids into kerogen while hydrothermal alteration was active. We posit that such early sequestration may enhance the resistance of molecular biosignatures against in situ hydrothermal and post-depositional alteration. Furthermore, the co-occurrence of organic matter with different thermal maturities in the Lake Magadi cherts suggests that similar findings in Archean hydrothermal deposits could partly reflect original environmental conditions and not exclusively postdepositional overprint or contamination. Our results support the view that kerogen in Archean hydrothermal cherts may contain important information on early life. Our study also highlights the suitability of Lake Magadi as an analog system for hydrothermal chert environments on the Archean Earth.

Original languageEnglish (US)
Pages (from-to)2443-2465
Number of pages23
JournalBiogeosciences
Volume16
Issue number12
DOIs
StatePublished - Jun 19 2019

Fingerprint

hydrothermal deposit
early Earth
kerogen
Kenya
organic matter
Pleistocene
Archean
lakes
bitumen
lake
thermal maturity
heat
fatty alcohols
isoprenoid
isoprenoids
dissolved organic matter
polycyclic aromatic hydrocarbons
chert
Archaea
hydrothermal system

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes

Cite this

Reinhardt, Manuel ; Goetz, Walter ; Duda, Jan Peter ; Heim, Christine Marcelle ; Reitner, Joachim ; Thiel, Volker. / Organic signatures in pleistocene cherts from lake magadi (Kenya) - Implications for early Earth hydrothermal deposits. In: Biogeosciences. 2019 ; Vol. 16, No. 12. pp. 2443-2465.
@article{92f8a70d52b148b286d06cdae2eef659,
title = "Organic signatures in pleistocene cherts from lake magadi (Kenya) - Implications for early Earth hydrothermal deposits",
abstract = "Organic matter in Archean hydrothermal cherts may provide an important archive for molecular traces of the earliest life on Earth. The geobiological interpretation of this archive, however, requires a sound understanding of organic matter preservation and alteration in hydrothermal systems. Here we report on organic matter (including molecular biosignatures) enclosed in hydrothermally influenced cherts of the Pleistocene Lake Magadi (Kenya; High Magadi Beds and Green Beds). The Magadi cherts contain low organic carbon (< 0.4 wt {\%}) that occurs in the form of finely dispersed clots, layers, or encapsulated within microscopic carbonate rhombs. Both extractable (bitumen) and non-extractable organic matter (kerogen) were analyzed. The bitumens contain immature {"}biolipids{"} like glycerol mono- and diethers (e.g., archaeol and extended archaeol), fatty acids, and alcohols indicative for, inter alia, thermophilic cyanobacteria, sulfate reducers, and haloarchaea. However, co-occurring {"}geolipids{"} such as n-alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) indicate that a fraction of the bitumen has been thermally altered to early or peak oil window maturity. This more mature fraction likely originated from defunctionalization of dissolved organic matter and/or hydrothermal petroleum formation at places of higher thermal flux. Like the bitumens, the kerogens also show variations in thermal maturities, which can partly be explained by admixture of thermally pre-altered macromolecules. However, findings of archaea-derived isoprenoid moieties (C20 and C25 chains) in kerogen pyrolysates indicate rapid sequestration of some archaeal lipids into kerogen while hydrothermal alteration was active. We posit that such early sequestration may enhance the resistance of molecular biosignatures against in situ hydrothermal and post-depositional alteration. Furthermore, the co-occurrence of organic matter with different thermal maturities in the Lake Magadi cherts suggests that similar findings in Archean hydrothermal deposits could partly reflect original environmental conditions and not exclusively postdepositional overprint or contamination. Our results support the view that kerogen in Archean hydrothermal cherts may contain important information on early life. Our study also highlights the suitability of Lake Magadi as an analog system for hydrothermal chert environments on the Archean Earth.",
author = "Manuel Reinhardt and Walter Goetz and Duda, {Jan Peter} and Heim, {Christine Marcelle} and Joachim Reitner and Volker Thiel",
year = "2019",
month = "6",
day = "19",
doi = "10.5194/bg-16-2443-2019",
language = "English (US)",
volume = "16",
pages = "2443--2465",
journal = "Biogeosciences",
issn = "1726-4170",
publisher = "European Geosciences Union",
number = "12",

}

Organic signatures in pleistocene cherts from lake magadi (Kenya) - Implications for early Earth hydrothermal deposits. / Reinhardt, Manuel; Goetz, Walter; Duda, Jan Peter; Heim, Christine Marcelle; Reitner, Joachim; Thiel, Volker.

In: Biogeosciences, Vol. 16, No. 12, 19.06.2019, p. 2443-2465.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Organic signatures in pleistocene cherts from lake magadi (Kenya) - Implications for early Earth hydrothermal deposits

AU - Reinhardt, Manuel

AU - Goetz, Walter

AU - Duda, Jan Peter

AU - Heim, Christine Marcelle

AU - Reitner, Joachim

AU - Thiel, Volker

PY - 2019/6/19

Y1 - 2019/6/19

N2 - Organic matter in Archean hydrothermal cherts may provide an important archive for molecular traces of the earliest life on Earth. The geobiological interpretation of this archive, however, requires a sound understanding of organic matter preservation and alteration in hydrothermal systems. Here we report on organic matter (including molecular biosignatures) enclosed in hydrothermally influenced cherts of the Pleistocene Lake Magadi (Kenya; High Magadi Beds and Green Beds). The Magadi cherts contain low organic carbon (< 0.4 wt %) that occurs in the form of finely dispersed clots, layers, or encapsulated within microscopic carbonate rhombs. Both extractable (bitumen) and non-extractable organic matter (kerogen) were analyzed. The bitumens contain immature "biolipids" like glycerol mono- and diethers (e.g., archaeol and extended archaeol), fatty acids, and alcohols indicative for, inter alia, thermophilic cyanobacteria, sulfate reducers, and haloarchaea. However, co-occurring "geolipids" such as n-alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) indicate that a fraction of the bitumen has been thermally altered to early or peak oil window maturity. This more mature fraction likely originated from defunctionalization of dissolved organic matter and/or hydrothermal petroleum formation at places of higher thermal flux. Like the bitumens, the kerogens also show variations in thermal maturities, which can partly be explained by admixture of thermally pre-altered macromolecules. However, findings of archaea-derived isoprenoid moieties (C20 and C25 chains) in kerogen pyrolysates indicate rapid sequestration of some archaeal lipids into kerogen while hydrothermal alteration was active. We posit that such early sequestration may enhance the resistance of molecular biosignatures against in situ hydrothermal and post-depositional alteration. Furthermore, the co-occurrence of organic matter with different thermal maturities in the Lake Magadi cherts suggests that similar findings in Archean hydrothermal deposits could partly reflect original environmental conditions and not exclusively postdepositional overprint or contamination. Our results support the view that kerogen in Archean hydrothermal cherts may contain important information on early life. Our study also highlights the suitability of Lake Magadi as an analog system for hydrothermal chert environments on the Archean Earth.

AB - Organic matter in Archean hydrothermal cherts may provide an important archive for molecular traces of the earliest life on Earth. The geobiological interpretation of this archive, however, requires a sound understanding of organic matter preservation and alteration in hydrothermal systems. Here we report on organic matter (including molecular biosignatures) enclosed in hydrothermally influenced cherts of the Pleistocene Lake Magadi (Kenya; High Magadi Beds and Green Beds). The Magadi cherts contain low organic carbon (< 0.4 wt %) that occurs in the form of finely dispersed clots, layers, or encapsulated within microscopic carbonate rhombs. Both extractable (bitumen) and non-extractable organic matter (kerogen) were analyzed. The bitumens contain immature "biolipids" like glycerol mono- and diethers (e.g., archaeol and extended archaeol), fatty acids, and alcohols indicative for, inter alia, thermophilic cyanobacteria, sulfate reducers, and haloarchaea. However, co-occurring "geolipids" such as n-alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) indicate that a fraction of the bitumen has been thermally altered to early or peak oil window maturity. This more mature fraction likely originated from defunctionalization of dissolved organic matter and/or hydrothermal petroleum formation at places of higher thermal flux. Like the bitumens, the kerogens also show variations in thermal maturities, which can partly be explained by admixture of thermally pre-altered macromolecules. However, findings of archaea-derived isoprenoid moieties (C20 and C25 chains) in kerogen pyrolysates indicate rapid sequestration of some archaeal lipids into kerogen while hydrothermal alteration was active. We posit that such early sequestration may enhance the resistance of molecular biosignatures against in situ hydrothermal and post-depositional alteration. Furthermore, the co-occurrence of organic matter with different thermal maturities in the Lake Magadi cherts suggests that similar findings in Archean hydrothermal deposits could partly reflect original environmental conditions and not exclusively postdepositional overprint or contamination. Our results support the view that kerogen in Archean hydrothermal cherts may contain important information on early life. Our study also highlights the suitability of Lake Magadi as an analog system for hydrothermal chert environments on the Archean Earth.

UR - http://www.scopus.com/inward/record.url?scp=85067624741&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067624741&partnerID=8YFLogxK

U2 - 10.5194/bg-16-2443-2019

DO - 10.5194/bg-16-2443-2019

M3 - Article

VL - 16

SP - 2443

EP - 2465

JO - Biogeosciences

JF - Biogeosciences

SN - 1726-4170

IS - 12

ER -