Oxidation of Propane at Elevated Pressures: Experiments and Modelling

J. S. Hoffman, W. Lee, T. A. Litzinger, D. A. Santavicca, W. J. Pitz

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The oxidation of propane in air at elevated pressure was investigated in a chemical flow reactor and modelled with a comprehensive chemical kinetic model. Results are presented for pressures of 3. 6, and 10 atmospheres, temperatures near 850 and 900 K, and equivalence ratio of 0.3. Gas samples were analyzed using gas chromatography with aldehydes additionally sampled using a dinitrophenylhydrazine/acetonitrile(DNPH/ACN) procedure. Major product species observed include C3H6, C2H4 and CO; trace amounts of CH4 and CO2 were detected, as well as H2 and oxygenated species including CH2O, CH3CHO, C3H6O, and C2H5CHO. Fuel conversion was increased with increased pressure and temperature, and the product distribution was significantly shifted in favor of C3H6 over C2H4 with increased pressure and decreased temperature. Comparison between modelling and measured results for ethylene concentrations supported the use of Tsang's recent values for the rate of propyl radical decomposition. The model compared well to fuel and major intermediates at 6 and 10 atm; however, at 3 atm, the model deviated significantly from the experimental results. Also, a comparison to oxygenated intermediates and H2 indicates a need for additional model development. Major production paths are obtained from the model and discussed.

Original languageEnglish (US)
Pages (from-to)95-125
Number of pages31
JournalCombustion science and technology
Volume77
Issue number1-3
DOIs
StatePublished - May 1 1991

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Oxidation of Propane at Elevated Pressures: Experiments and Modelling'. Together they form a unique fingerprint.

Cite this