Pair arithmetical equivalence for quadratic fields

Wen Ching Winnie Li, Zeev Rudnick

Research output: Contribution to journalArticlepeer-review

Abstract

Given two nonisomorphic number fields K and M, and finite order Hecke characters χ of K and η of M respectively, we say that the pairs (χ, K) and (η, M) are arithmetically equivalent if the associated L-functions coincide: L(s,χ,K)=L(s,η,M).When the characters are trivial, this reduces to the question of fields with the same Dedekind zeta function, investigated by Gassmann in 1926, who found such fields of degree 180, and by Perlis (J Number Theory 9(3):342–360, 1977) and others, who showed that there are no nonisomorphic fields of degree less than 7. We construct infinitely many such pairs where the fields are quadratic. This gives dihedral automorphic forms induced from characters of different quadratic fields. We also give a classification of such characters of order 2 for the quadratic fields of our examples, all with odd class number.

Original languageEnglish (US)
JournalMathematische Zeitschrift
DOIs
StateAccepted/In press - 2021

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Fingerprint Dive into the research topics of 'Pair arithmetical equivalence for quadratic fields'. Together they form a unique fingerprint.

Cite this