Parametric study of single-pipe diffusers in stratified chilled water storage tanks (RP-1185)

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

A parametric study was performed of the charging thermal performance of a full-scale pipe diffuser in a single cylindrical stratified chilled water storage tank by applying factorial experimental theory to the results of simulations performed with a validated computational fluid dynamics (CFD) model. Dimensional parameters having the potential to influence charging inlet performance were identified and formed into dimensionless groups using the method of repeating variables. Parameters included: the inlet Richardson number based on inlet slot width (Ril), inlet Reynolds number (Rei), ratio of inlet width to diffuser height (l/hi), ratio of inlet diffuser height to tank radius (hi/RW), and ratio of diffuser radius to tank radius (RD/RW). Thermal performance was measured in terms of equivalent lost tank height (ELH). A full 2k factorial experiment of thirty-two simulations was performed and analyzed. Parameter ranges were: 0.05-2 for Ril, 500–5000 for Rei, 0.1–1 for l/hi, 0.005–0.05 for hi/RW, and 0.707–0.866 for RD/RW. Within these ranges, Ril, l/hi, and hi/RW were found to be of first-order significance, while Rei and RD/RW were not. Two-factor interactions involving Ril, l/hi, and hi/RW were also significant. Regression models of equivalent lost tank height as functions of Ril, l/hi, and hi/RW were developed. The predictive capabilities of the regression models were tested against the results of five additional CFD simulations having parameter values different from the 2k factorial experiment cases. On average, regression models predicted factorial experiment data to within 10% with maximum error of 30% to 60%, depending on the model.

Original languageEnglish (US)
Pages (from-to)345-365
Number of pages21
JournalHVAC and R Research
Volume10
Issue number3
DOIs
StatePublished - Jul 2004

Fingerprint

Pipe
Water
Computational fluid dynamics
Experiments
Dynamic models
Reynolds number
Computer simulation
Hot Temperature

All Science Journal Classification (ASJC) codes

  • Building and Construction

Cite this

@article{6edc43cb53554c3b9a42747c400c0883,
title = "Parametric study of single-pipe diffusers in stratified chilled water storage tanks (RP-1185)",
abstract = "A parametric study was performed of the charging thermal performance of a full-scale pipe diffuser in a single cylindrical stratified chilled water storage tank by applying factorial experimental theory to the results of simulations performed with a validated computational fluid dynamics (CFD) model. Dimensional parameters having the potential to influence charging inlet performance were identified and formed into dimensionless groups using the method of repeating variables. Parameters included: the inlet Richardson number based on inlet slot width (Ril), inlet Reynolds number (Rei), ratio of inlet width to diffuser height (l/hi), ratio of inlet diffuser height to tank radius (hi/RW), and ratio of diffuser radius to tank radius (RD/RW). Thermal performance was measured in terms of equivalent lost tank height (ELH). A full 2k factorial experiment of thirty-two simulations was performed and analyzed. Parameter ranges were: 0.05-2 for Ril, 500–5000 for Rei, 0.1–1 for l/hi, 0.005–0.05 for hi/RW, and 0.707–0.866 for RD/RW. Within these ranges, Ril, l/hi, and hi/RW were found to be of first-order significance, while Rei and RD/RW were not. Two-factor interactions involving Ril, l/hi, and hi/RW were also significant. Regression models of equivalent lost tank height as functions of Ril, l/hi, and hi/RW were developed. The predictive capabilities of the regression models were tested against the results of five additional CFD simulations having parameter values different from the 2k factorial experiment cases. On average, regression models predicted factorial experiment data to within 10{\%} with maximum error of 30{\%} to 60{\%}, depending on the model.",
author = "Jing Song and Bahnfleth, {William P.} and Cimbala, {John M.}",
year = "2004",
month = "7",
doi = "10.1080/10789669.2004.10391108",
language = "English (US)",
volume = "10",
pages = "345--365",
journal = "Science and Technology for the Built Environment",
issn = "2374-4731",
publisher = "Taylor and Francis Ltd.",
number = "3",

}

Parametric study of single-pipe diffusers in stratified chilled water storage tanks (RP-1185). / Song, Jing; Bahnfleth, William P.; Cimbala, John M.

In: HVAC and R Research, Vol. 10, No. 3, 07.2004, p. 345-365.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Parametric study of single-pipe diffusers in stratified chilled water storage tanks (RP-1185)

AU - Song, Jing

AU - Bahnfleth, William P.

AU - Cimbala, John M.

PY - 2004/7

Y1 - 2004/7

N2 - A parametric study was performed of the charging thermal performance of a full-scale pipe diffuser in a single cylindrical stratified chilled water storage tank by applying factorial experimental theory to the results of simulations performed with a validated computational fluid dynamics (CFD) model. Dimensional parameters having the potential to influence charging inlet performance were identified and formed into dimensionless groups using the method of repeating variables. Parameters included: the inlet Richardson number based on inlet slot width (Ril), inlet Reynolds number (Rei), ratio of inlet width to diffuser height (l/hi), ratio of inlet diffuser height to tank radius (hi/RW), and ratio of diffuser radius to tank radius (RD/RW). Thermal performance was measured in terms of equivalent lost tank height (ELH). A full 2k factorial experiment of thirty-two simulations was performed and analyzed. Parameter ranges were: 0.05-2 for Ril, 500–5000 for Rei, 0.1–1 for l/hi, 0.005–0.05 for hi/RW, and 0.707–0.866 for RD/RW. Within these ranges, Ril, l/hi, and hi/RW were found to be of first-order significance, while Rei and RD/RW were not. Two-factor interactions involving Ril, l/hi, and hi/RW were also significant. Regression models of equivalent lost tank height as functions of Ril, l/hi, and hi/RW were developed. The predictive capabilities of the regression models were tested against the results of five additional CFD simulations having parameter values different from the 2k factorial experiment cases. On average, regression models predicted factorial experiment data to within 10% with maximum error of 30% to 60%, depending on the model.

AB - A parametric study was performed of the charging thermal performance of a full-scale pipe diffuser in a single cylindrical stratified chilled water storage tank by applying factorial experimental theory to the results of simulations performed with a validated computational fluid dynamics (CFD) model. Dimensional parameters having the potential to influence charging inlet performance were identified and formed into dimensionless groups using the method of repeating variables. Parameters included: the inlet Richardson number based on inlet slot width (Ril), inlet Reynolds number (Rei), ratio of inlet width to diffuser height (l/hi), ratio of inlet diffuser height to tank radius (hi/RW), and ratio of diffuser radius to tank radius (RD/RW). Thermal performance was measured in terms of equivalent lost tank height (ELH). A full 2k factorial experiment of thirty-two simulations was performed and analyzed. Parameter ranges were: 0.05-2 for Ril, 500–5000 for Rei, 0.1–1 for l/hi, 0.005–0.05 for hi/RW, and 0.707–0.866 for RD/RW. Within these ranges, Ril, l/hi, and hi/RW were found to be of first-order significance, while Rei and RD/RW were not. Two-factor interactions involving Ril, l/hi, and hi/RW were also significant. Regression models of equivalent lost tank height as functions of Ril, l/hi, and hi/RW were developed. The predictive capabilities of the regression models were tested against the results of five additional CFD simulations having parameter values different from the 2k factorial experiment cases. On average, regression models predicted factorial experiment data to within 10% with maximum error of 30% to 60%, depending on the model.

UR - http://www.scopus.com/inward/record.url?scp=3142671838&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3142671838&partnerID=8YFLogxK

U2 - 10.1080/10789669.2004.10391108

DO - 10.1080/10789669.2004.10391108

M3 - Article

AN - SCOPUS:3142671838

VL - 10

SP - 345

EP - 365

JO - Science and Technology for the Built Environment

JF - Science and Technology for the Built Environment

SN - 2374-4731

IS - 3

ER -