Parametrically excited nonlinear piezoelectric wind energy harvester

M. Amin Karami, Justin R. Farmer, Scott Bressers, Shashank Priya, Daniel J. Inman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

A nonlinear piezoelectric wind energy harvester is proposed which operates at low wind speeds and is not sensitive to the speed of the gusts. The piezoelectric transduction mechanism is used instead of DC generators to eliminate the gearbox in the windmill and thus reduces the friction. The reduced friction facilitates operation of the windmill at low wind speeds. Permanent magnets have been placed in the blade part of the windmill. The magnets axially repel another set of magnets which are positioned at the tip of the piezoelectric beams. As a result, when the rotating magnets pass over the piezoelectric beams they excite the beams and affect the type of their vibrations. The nature of excitations in the proposed design is therefore both parametric excitations and ordinary excitations. The nonlinear magnetic axial force makes the vibrations of the beams nonlinear and can make the beams bi-stable. This phenomenon is utilized to enhance the power output and to improve the robustness of the power production. Two designs are presented which incorporate parametric and ordinary excitations to generate electric power. The performance of each design is examined through experimental investigations.

Original languageEnglish (US)
Title of host publicationASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2011
PublisherAmerican Society of Mechanical Engineers
Pages199-206
Number of pages8
ISBN (Print)9780791854723
DOIs
StatePublished - 2011
EventASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2011 - Scottsdale, AZ, United States
Duration: Sep 18 2011Sep 21 2011

Publication series

NameASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2011
Volume2

Other

OtherASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2011
CountryUnited States
CityScottsdale, AZ
Period9/18/119/21/11

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Biomaterials

Fingerprint Dive into the research topics of 'Parametrically excited nonlinear piezoelectric wind energy harvester'. Together they form a unique fingerprint.

Cite this