Path planning for functionally graded materials in hollow tissue scaffold printing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

This study proposes a new path planning methodology to control functionally graded materials in hollowed scaffold printing for tissue engineering. Based on ruled surface construction from our earlier work [1], ruling lines are postprocessed for continuous path planning with uniform material deposition. Besides, arc fitting is used to reduce over-deposition by enabling non-stop deposition at the sharp turns. Layer-by-layer deposition is progressed through consecutive layers of ruling line based zigzag pattern followed by a biarc fitted spiral pattern. Functionally graded material properties are then mapped based on parametric distances from hollow features.

Original languageEnglish (US)
Title of host publicationDesign and Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages49-53
Number of pages5
ISBN (Print)9780791854891
DOIs
StatePublished - Jan 1 2011
EventASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 - Denver, CO, United States
Duration: Nov 11 2011Nov 17 2011

Publication series

NameASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
Volume3

Other

OtherASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
CountryUnited States
CityDenver, CO
Period11/11/1111/17/11

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Path planning for functionally graded materials in hollow tissue scaffold printing'. Together they form a unique fingerprint.

Cite this