Pathways, kinetics, and mechanisms for 2-dodecyl-9,10-dihydrophenanthrene pyrolysis

Phillip E. Savage, Kelly L. Baxter

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We pyrolyzed 2-dodecyl-9,10-dihydrophenanthrene (DDPh) in batch microreactors. The reaction conditions included neat pyrolyses between 375-450 °C for times of 15-240 min and also pyrolyses in benzene at 400 °C and 90 min but at different initial DDPh concentrations ranging from 0.0095 to 0.238 mol/L. The disappearance of DDPh followed first-order kinetics, and the global first-order rate constant had Arrhenius parameters of (log10 A (s-1) = 13.6 ± 2.8 and E (kcal/mol) = 54.5 ± 9.1, where the uncertainties are the 95% confidence intervals. The decomposition of DDPh can be described by a reaction network that possesses four parallel primary pathways. The major primary path, which involves dehydrogenation, leads to 2-dodecylphenanthrene. The other three primary paths involve C-C bond cleavage, and they lead to 2-methyl-9,10-dihydrophenanthrene plus undecene, to 2-vinyl-9,10-dihydrophenanthrene plus decane, and to numerous minor products. Important secondary and tertiary reactions include the rapid reduction of 2-vinyl-9,10-dihydrophenanthrene to 2-ethyl-9,10-dihydrophenanthrene and the facile dehydrogenation of 2-methyl- and 2-ethyl-9,10-dihydrophenanthrene to form 2-methyl- and 2-ethylphenanthrene, respectively. The identities and relative abundances of the major products are consistent with a free-radical chain reaction mechanism for DDPh pyrolysis.

Original languageEnglish (US)
Pages (from-to)1517-1523
Number of pages7
JournalIndustrial and Engineering Chemistry Research
Volume35
Issue number5
DOIs
StatePublished - Jan 1 1996

Fingerprint

Pyrolysis
Dehydrogenation
Kinetics
Benzene
Free radicals
Free Radicals
Rate constants
Decomposition
Uncertainty
decane

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Cite this

@article{30f258ca58884452a5bb35c29839b6ff,
title = "Pathways, kinetics, and mechanisms for 2-dodecyl-9,10-dihydrophenanthrene pyrolysis",
abstract = "We pyrolyzed 2-dodecyl-9,10-dihydrophenanthrene (DDPh) in batch microreactors. The reaction conditions included neat pyrolyses between 375-450 °C for times of 15-240 min and also pyrolyses in benzene at 400 °C and 90 min but at different initial DDPh concentrations ranging from 0.0095 to 0.238 mol/L. The disappearance of DDPh followed first-order kinetics, and the global first-order rate constant had Arrhenius parameters of (log10 A (s-1) = 13.6 ± 2.8 and E (kcal/mol) = 54.5 ± 9.1, where the uncertainties are the 95{\%} confidence intervals. The decomposition of DDPh can be described by a reaction network that possesses four parallel primary pathways. The major primary path, which involves dehydrogenation, leads to 2-dodecylphenanthrene. The other three primary paths involve C-C bond cleavage, and they lead to 2-methyl-9,10-dihydrophenanthrene plus undecene, to 2-vinyl-9,10-dihydrophenanthrene plus decane, and to numerous minor products. Important secondary and tertiary reactions include the rapid reduction of 2-vinyl-9,10-dihydrophenanthrene to 2-ethyl-9,10-dihydrophenanthrene and the facile dehydrogenation of 2-methyl- and 2-ethyl-9,10-dihydrophenanthrene to form 2-methyl- and 2-ethylphenanthrene, respectively. The identities and relative abundances of the major products are consistent with a free-radical chain reaction mechanism for DDPh pyrolysis.",
author = "Savage, {Phillip E.} and Baxter, {Kelly L.}",
year = "1996",
month = "1",
day = "1",
doi = "10.1021/ie950550j",
language = "English (US)",
volume = "35",
pages = "1517--1523",
journal = "Industrial and Engineering Chemistry Research",
issn = "0888-5885",
publisher = "American Chemical Society",
number = "5",

}

Pathways, kinetics, and mechanisms for 2-dodecyl-9,10-dihydrophenanthrene pyrolysis. / Savage, Phillip E.; Baxter, Kelly L.

In: Industrial and Engineering Chemistry Research, Vol. 35, No. 5, 01.01.1996, p. 1517-1523.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Pathways, kinetics, and mechanisms for 2-dodecyl-9,10-dihydrophenanthrene pyrolysis

AU - Savage, Phillip E.

AU - Baxter, Kelly L.

PY - 1996/1/1

Y1 - 1996/1/1

N2 - We pyrolyzed 2-dodecyl-9,10-dihydrophenanthrene (DDPh) in batch microreactors. The reaction conditions included neat pyrolyses between 375-450 °C for times of 15-240 min and also pyrolyses in benzene at 400 °C and 90 min but at different initial DDPh concentrations ranging from 0.0095 to 0.238 mol/L. The disappearance of DDPh followed first-order kinetics, and the global first-order rate constant had Arrhenius parameters of (log10 A (s-1) = 13.6 ± 2.8 and E (kcal/mol) = 54.5 ± 9.1, where the uncertainties are the 95% confidence intervals. The decomposition of DDPh can be described by a reaction network that possesses four parallel primary pathways. The major primary path, which involves dehydrogenation, leads to 2-dodecylphenanthrene. The other three primary paths involve C-C bond cleavage, and they lead to 2-methyl-9,10-dihydrophenanthrene plus undecene, to 2-vinyl-9,10-dihydrophenanthrene plus decane, and to numerous minor products. Important secondary and tertiary reactions include the rapid reduction of 2-vinyl-9,10-dihydrophenanthrene to 2-ethyl-9,10-dihydrophenanthrene and the facile dehydrogenation of 2-methyl- and 2-ethyl-9,10-dihydrophenanthrene to form 2-methyl- and 2-ethylphenanthrene, respectively. The identities and relative abundances of the major products are consistent with a free-radical chain reaction mechanism for DDPh pyrolysis.

AB - We pyrolyzed 2-dodecyl-9,10-dihydrophenanthrene (DDPh) in batch microreactors. The reaction conditions included neat pyrolyses between 375-450 °C for times of 15-240 min and also pyrolyses in benzene at 400 °C and 90 min but at different initial DDPh concentrations ranging from 0.0095 to 0.238 mol/L. The disappearance of DDPh followed first-order kinetics, and the global first-order rate constant had Arrhenius parameters of (log10 A (s-1) = 13.6 ± 2.8 and E (kcal/mol) = 54.5 ± 9.1, where the uncertainties are the 95% confidence intervals. The decomposition of DDPh can be described by a reaction network that possesses four parallel primary pathways. The major primary path, which involves dehydrogenation, leads to 2-dodecylphenanthrene. The other three primary paths involve C-C bond cleavage, and they lead to 2-methyl-9,10-dihydrophenanthrene plus undecene, to 2-vinyl-9,10-dihydrophenanthrene plus decane, and to numerous minor products. Important secondary and tertiary reactions include the rapid reduction of 2-vinyl-9,10-dihydrophenanthrene to 2-ethyl-9,10-dihydrophenanthrene and the facile dehydrogenation of 2-methyl- and 2-ethyl-9,10-dihydrophenanthrene to form 2-methyl- and 2-ethylphenanthrene, respectively. The identities and relative abundances of the major products are consistent with a free-radical chain reaction mechanism for DDPh pyrolysis.

UR - http://www.scopus.com/inward/record.url?scp=0030151071&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030151071&partnerID=8YFLogxK

U2 - 10.1021/ie950550j

DO - 10.1021/ie950550j

M3 - Article

VL - 35

SP - 1517

EP - 1523

JO - Industrial and Engineering Chemistry Research

JF - Industrial and Engineering Chemistry Research

SN - 0888-5885

IS - 5

ER -