Peach tree growth, yield, and profitability as influenced by tree form and tree density

Richard P. Marini, D. S. Sowers

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

'Norman' peach [Prunus persica (L.) Batsch] trees were trained to the central-leader or open-vase form and were planted at high (740 trees/ha), or low (370 trees/ha) density. A third density treatment was a HIGH → LOW density, where alternate trees in high-density plots were removed after 6 years to produce a low-density treatment. From 3 to 5 years after planting, trunk cross-sectional areas (TCA) increased most for low-density trees. After 9 years, TCA was greatest for low-density and least for high-density trees. Because of differences in tree training, central-leader trees were taller than open-vase trees and tree spread was greater for low-density than for high-density trees. Annual yield per hectare was 15% to 40% greater for high-density treatments than for low-density treatments, but tree form had little influence on yield. Average fruit weight tended to be greater for low-density than for high-density treatments, but cumulative marketable yield was greatest for high-density and lowest for HIGH → LOW treatments. Income minus costs for 9 years was nearly $4200/ha higher, and net present value was about $2200/ha higher, for open-vase than for central-leader trees (P = 0.08). Cumulative net present value for the 9 years was about $2660/ha higher for high-than for low-density trees (P = 0.36).

Original languageEnglish (US)
Pages (from-to)837-842
Number of pages6
JournalHortScience
Volume35
Issue number5
StatePublished - Jan 1 2000

Fingerprint

tree growth
profitability
peaches
tree trunk
Prunus persica
income

All Science Journal Classification (ASJC) codes

  • Horticulture

Cite this

@article{a2f9ffb926974d0aae486c4aa95da3ed,
title = "Peach tree growth, yield, and profitability as influenced by tree form and tree density",
abstract = "'Norman' peach [Prunus persica (L.) Batsch] trees were trained to the central-leader or open-vase form and were planted at high (740 trees/ha), or low (370 trees/ha) density. A third density treatment was a HIGH → LOW density, where alternate trees in high-density plots were removed after 6 years to produce a low-density treatment. From 3 to 5 years after planting, trunk cross-sectional areas (TCA) increased most for low-density trees. After 9 years, TCA was greatest for low-density and least for high-density trees. Because of differences in tree training, central-leader trees were taller than open-vase trees and tree spread was greater for low-density than for high-density trees. Annual yield per hectare was 15{\%} to 40{\%} greater for high-density treatments than for low-density treatments, but tree form had little influence on yield. Average fruit weight tended to be greater for low-density than for high-density treatments, but cumulative marketable yield was greatest for high-density and lowest for HIGH → LOW treatments. Income minus costs for 9 years was nearly $4200/ha higher, and net present value was about $2200/ha higher, for open-vase than for central-leader trees (P = 0.08). Cumulative net present value for the 9 years was about $2660/ha higher for high-than for low-density trees (P = 0.36).",
author = "Marini, {Richard P.} and Sowers, {D. S.}",
year = "2000",
month = "1",
day = "1",
language = "English (US)",
volume = "35",
pages = "837--842",
journal = "Hortscience: A Publication of the American Society for Hortcultural Science",
issn = "0018-5345",
publisher = "American Society for Horticultural Science",
number = "5",

}

Peach tree growth, yield, and profitability as influenced by tree form and tree density. / Marini, Richard P.; Sowers, D. S.

In: HortScience, Vol. 35, No. 5, 01.01.2000, p. 837-842.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Peach tree growth, yield, and profitability as influenced by tree form and tree density

AU - Marini, Richard P.

AU - Sowers, D. S.

PY - 2000/1/1

Y1 - 2000/1/1

N2 - 'Norman' peach [Prunus persica (L.) Batsch] trees were trained to the central-leader or open-vase form and were planted at high (740 trees/ha), or low (370 trees/ha) density. A third density treatment was a HIGH → LOW density, where alternate trees in high-density plots were removed after 6 years to produce a low-density treatment. From 3 to 5 years after planting, trunk cross-sectional areas (TCA) increased most for low-density trees. After 9 years, TCA was greatest for low-density and least for high-density trees. Because of differences in tree training, central-leader trees were taller than open-vase trees and tree spread was greater for low-density than for high-density trees. Annual yield per hectare was 15% to 40% greater for high-density treatments than for low-density treatments, but tree form had little influence on yield. Average fruit weight tended to be greater for low-density than for high-density treatments, but cumulative marketable yield was greatest for high-density and lowest for HIGH → LOW treatments. Income minus costs for 9 years was nearly $4200/ha higher, and net present value was about $2200/ha higher, for open-vase than for central-leader trees (P = 0.08). Cumulative net present value for the 9 years was about $2660/ha higher for high-than for low-density trees (P = 0.36).

AB - 'Norman' peach [Prunus persica (L.) Batsch] trees were trained to the central-leader or open-vase form and were planted at high (740 trees/ha), or low (370 trees/ha) density. A third density treatment was a HIGH → LOW density, where alternate trees in high-density plots were removed after 6 years to produce a low-density treatment. From 3 to 5 years after planting, trunk cross-sectional areas (TCA) increased most for low-density trees. After 9 years, TCA was greatest for low-density and least for high-density trees. Because of differences in tree training, central-leader trees were taller than open-vase trees and tree spread was greater for low-density than for high-density trees. Annual yield per hectare was 15% to 40% greater for high-density treatments than for low-density treatments, but tree form had little influence on yield. Average fruit weight tended to be greater for low-density than for high-density treatments, but cumulative marketable yield was greatest for high-density and lowest for HIGH → LOW treatments. Income minus costs for 9 years was nearly $4200/ha higher, and net present value was about $2200/ha higher, for open-vase than for central-leader trees (P = 0.08). Cumulative net present value for the 9 years was about $2660/ha higher for high-than for low-density trees (P = 0.36).

UR - http://www.scopus.com/inward/record.url?scp=0033827865&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033827865&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0033827865

VL - 35

SP - 837

EP - 842

JO - Hortscience: A Publication of the American Society for Hortcultural Science

JF - Hortscience: A Publication of the American Society for Hortcultural Science

SN - 0018-5345

IS - 5

ER -