TY - JOUR
T1 - Perennial ryegrass wear resistance and soil amendment by Ca- And Mg-silicates
AU - Pruyne, Derek T.
AU - Schlossberg, Maxim J.
AU - Uddin, Wakar
N1 - Funding Information:
Funding: This research was funded by Harsco Minerals Intl. (Sarver, PA), the USDA National Institute of Food and Agriculture and Hatch Appropriations under Project #PEN04592 and Accession #1006804, and The Pennsylvania Turfgrass Council.
Funding Information:
This research was funded by Harsco Minerals Intl. (Sarver, PA), the USDA National Institute of Food and Agriculture and Hatch Appropriations under Project #PEN04592 and Accession #1006804, and The Pennsylvania Turfgrass Council. The authors are also indebted to Mr. Kyle Hivner and associated personnel in the Center for Turfgrass Science at the Pennsylvania State University for their technical support of the described research.
Publisher Copyright:
© 2019 by the authors.
PY - 2019/9/25
Y1 - 2019/9/25
N2 - Proactive optimization of soil chemistry is a task commonly overlooked by agronomic practitioners. Agricultural field assessments have reported depletion of extractable soil silicon (Si) from shallow depths of intensively managed systems. While not recognized as a plant-essential nutrient, Si accumulates in epidermal and vascular tissue of grass leaves, sheaths, and shoots. A field study of Ca/Mg-silicate (SiO3) pelletized soil conditioner was initiated on a perennial ryegrass (Lolium perenne L. cvs. 1:1:1 Manhattan, Brightstar SLT, Mach 1) athletic field in 2010. Plots were trafficked by a wear simulator weekly, June through Sept. in 2011 and 2012. Canopy quality measures, clipping yield, tissue composition, soil pH, and plant-available soil Si levels were regularly collected over the two-year study. Under intense wear treatment (traffic), perennial ryegrass plots treated annually by granular application of 1220 or 2440 kg Ca/Mg-silicates per hectare showed significantly improved mean canopy density relative to plots receiving equal Ca and Mg as lime. These described Ca/Mg-SiO3 annual application rates coincided with acetic acid extractable soil Si levels > 70 mg kg−1 in the 0-to 8-cm soil depth. Experimental and temporal variability preclude reporting of a critical threshold concentration of leaf Si for improved perennial ryegrass wear tolerance. Future efforts towards this end should sample tissue of plots receiving wear treatment, rather than adjacent, non-worn proxies.
AB - Proactive optimization of soil chemistry is a task commonly overlooked by agronomic practitioners. Agricultural field assessments have reported depletion of extractable soil silicon (Si) from shallow depths of intensively managed systems. While not recognized as a plant-essential nutrient, Si accumulates in epidermal and vascular tissue of grass leaves, sheaths, and shoots. A field study of Ca/Mg-silicate (SiO3) pelletized soil conditioner was initiated on a perennial ryegrass (Lolium perenne L. cvs. 1:1:1 Manhattan, Brightstar SLT, Mach 1) athletic field in 2010. Plots were trafficked by a wear simulator weekly, June through Sept. in 2011 and 2012. Canopy quality measures, clipping yield, tissue composition, soil pH, and plant-available soil Si levels were regularly collected over the two-year study. Under intense wear treatment (traffic), perennial ryegrass plots treated annually by granular application of 1220 or 2440 kg Ca/Mg-silicates per hectare showed significantly improved mean canopy density relative to plots receiving equal Ca and Mg as lime. These described Ca/Mg-SiO3 annual application rates coincided with acetic acid extractable soil Si levels > 70 mg kg−1 in the 0-to 8-cm soil depth. Experimental and temporal variability preclude reporting of a critical threshold concentration of leaf Si for improved perennial ryegrass wear tolerance. Future efforts towards this end should sample tissue of plots receiving wear treatment, rather than adjacent, non-worn proxies.
UR - http://www.scopus.com/inward/record.url?scp=85072683464&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072683464&partnerID=8YFLogxK
U2 - 10.3390/agronomy9100578
DO - 10.3390/agronomy9100578
M3 - Article
AN - SCOPUS:85072683464
SN - 2073-4395
VL - 9
JO - Agronomy
JF - Agronomy
IS - 10
M1 - 578
ER -