Performance assessment of hybrid chiller systems for combined cooling, heating and power production

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Hybrid chiller systems that combine electric and absorption chillers can play critical roles in performances of a combined cooling, heating, and power (CCHP) or trigeneration system. The objective of the present study is to investigate a new strategy for hybrid chiller-based CCHP systems that can optimize electric power production while achieving zero-excess electricity generation for a given building. Using this operation strategy, energy and environmental performances were examined for two U.S. Department of Energy reference buildings (large office and hospital) located in two climates (San Francisco, CA and Long Island, NY). The results show that the hybrid chiller-based CCHP systems can save the primary energy consumption up to 5.8 GWh/y for the large office building and 13.6 GWh/y for the hospital compared to the conventional reference system that utilizes a central grid. More significant energy savings are realized for the hospital than the large office mainly due to high electric and thermal loads throughout the year. Carbon dioxide emission associated with a CCHP system highly varies with the emission factor of a local grid. In case of using the hybrid chiller system in Long Island, NY, the carbon dioxide emission is 0.2-1.5 kton/y lower than the reference system, whereas it is 1.1-1.5 kton/y higher in San Francisco. However, compared to traditional CCHP systems that utilize only absorption chillers, the hybrid chiller-based CCHP systems can reduce carbon dioxide emission by 0.7 kton/y for the large office and 3.5 kton/y for the hospital. When comparing the effects of building types and local climates, building types have more significant effects on the energy performance, while local grid conditions have larger impacts on carbon dioxide emission of a hybrid chiller-based CCHP system. Overall, the study results suggest that the hybrid chiller-based CCHP systems can reduce more energy and carbon dioxide emission for commercial buildings or districts with high thermal and electric loads during the cooling season.

Original languageEnglish (US)
Pages (from-to)501-512
Number of pages12
JournalApplied Energy
Volume225
DOIs
StatePublished - Sep 1 2018

Fingerprint

performance assessment
Hybrid systems
Cooling
heating
cooling
Heating
Carbon dioxide
carbon dioxide
Electric loads
Thermal load
energy
Office buildings
electricity generation
climate
Energy conservation
Energy utilization
Electricity
hospital
office

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Energy(all)
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law

Cite this

@article{f933fe1fa0ae424eaf3066230f0c0c7c,
title = "Performance assessment of hybrid chiller systems for combined cooling, heating and power production",
abstract = "Hybrid chiller systems that combine electric and absorption chillers can play critical roles in performances of a combined cooling, heating, and power (CCHP) or trigeneration system. The objective of the present study is to investigate a new strategy for hybrid chiller-based CCHP systems that can optimize electric power production while achieving zero-excess electricity generation for a given building. Using this operation strategy, energy and environmental performances were examined for two U.S. Department of Energy reference buildings (large office and hospital) located in two climates (San Francisco, CA and Long Island, NY). The results show that the hybrid chiller-based CCHP systems can save the primary energy consumption up to 5.8 GWh/y for the large office building and 13.6 GWh/y for the hospital compared to the conventional reference system that utilizes a central grid. More significant energy savings are realized for the hospital than the large office mainly due to high electric and thermal loads throughout the year. Carbon dioxide emission associated with a CCHP system highly varies with the emission factor of a local grid. In case of using the hybrid chiller system in Long Island, NY, the carbon dioxide emission is 0.2-1.5 kton/y lower than the reference system, whereas it is 1.1-1.5 kton/y higher in San Francisco. However, compared to traditional CCHP systems that utilize only absorption chillers, the hybrid chiller-based CCHP systems can reduce carbon dioxide emission by 0.7 kton/y for the large office and 3.5 kton/y for the hospital. When comparing the effects of building types and local climates, building types have more significant effects on the energy performance, while local grid conditions have larger impacts on carbon dioxide emission of a hybrid chiller-based CCHP system. Overall, the study results suggest that the hybrid chiller-based CCHP systems can reduce more energy and carbon dioxide emission for commercial buildings or districts with high thermal and electric loads during the cooling season.",
author = "Hyeunguk Ahn and Donghyun Rim and James Freihaut",
year = "2018",
month = "9",
day = "1",
doi = "10.1016/j.apenergy.2018.05.045",
language = "English (US)",
volume = "225",
pages = "501--512",
journal = "Applied Energy",
issn = "0306-2619",
publisher = "Elsevier BV",

}

Performance assessment of hybrid chiller systems for combined cooling, heating and power production. / Ahn, Hyeunguk; Rim, Donghyun; Freihaut, James.

In: Applied Energy, Vol. 225, 01.09.2018, p. 501-512.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Performance assessment of hybrid chiller systems for combined cooling, heating and power production

AU - Ahn, Hyeunguk

AU - Rim, Donghyun

AU - Freihaut, James

PY - 2018/9/1

Y1 - 2018/9/1

N2 - Hybrid chiller systems that combine electric and absorption chillers can play critical roles in performances of a combined cooling, heating, and power (CCHP) or trigeneration system. The objective of the present study is to investigate a new strategy for hybrid chiller-based CCHP systems that can optimize electric power production while achieving zero-excess electricity generation for a given building. Using this operation strategy, energy and environmental performances were examined for two U.S. Department of Energy reference buildings (large office and hospital) located in two climates (San Francisco, CA and Long Island, NY). The results show that the hybrid chiller-based CCHP systems can save the primary energy consumption up to 5.8 GWh/y for the large office building and 13.6 GWh/y for the hospital compared to the conventional reference system that utilizes a central grid. More significant energy savings are realized for the hospital than the large office mainly due to high electric and thermal loads throughout the year. Carbon dioxide emission associated with a CCHP system highly varies with the emission factor of a local grid. In case of using the hybrid chiller system in Long Island, NY, the carbon dioxide emission is 0.2-1.5 kton/y lower than the reference system, whereas it is 1.1-1.5 kton/y higher in San Francisco. However, compared to traditional CCHP systems that utilize only absorption chillers, the hybrid chiller-based CCHP systems can reduce carbon dioxide emission by 0.7 kton/y for the large office and 3.5 kton/y for the hospital. When comparing the effects of building types and local climates, building types have more significant effects on the energy performance, while local grid conditions have larger impacts on carbon dioxide emission of a hybrid chiller-based CCHP system. Overall, the study results suggest that the hybrid chiller-based CCHP systems can reduce more energy and carbon dioxide emission for commercial buildings or districts with high thermal and electric loads during the cooling season.

AB - Hybrid chiller systems that combine electric and absorption chillers can play critical roles in performances of a combined cooling, heating, and power (CCHP) or trigeneration system. The objective of the present study is to investigate a new strategy for hybrid chiller-based CCHP systems that can optimize electric power production while achieving zero-excess electricity generation for a given building. Using this operation strategy, energy and environmental performances were examined for two U.S. Department of Energy reference buildings (large office and hospital) located in two climates (San Francisco, CA and Long Island, NY). The results show that the hybrid chiller-based CCHP systems can save the primary energy consumption up to 5.8 GWh/y for the large office building and 13.6 GWh/y for the hospital compared to the conventional reference system that utilizes a central grid. More significant energy savings are realized for the hospital than the large office mainly due to high electric and thermal loads throughout the year. Carbon dioxide emission associated with a CCHP system highly varies with the emission factor of a local grid. In case of using the hybrid chiller system in Long Island, NY, the carbon dioxide emission is 0.2-1.5 kton/y lower than the reference system, whereas it is 1.1-1.5 kton/y higher in San Francisco. However, compared to traditional CCHP systems that utilize only absorption chillers, the hybrid chiller-based CCHP systems can reduce carbon dioxide emission by 0.7 kton/y for the large office and 3.5 kton/y for the hospital. When comparing the effects of building types and local climates, building types have more significant effects on the energy performance, while local grid conditions have larger impacts on carbon dioxide emission of a hybrid chiller-based CCHP system. Overall, the study results suggest that the hybrid chiller-based CCHP systems can reduce more energy and carbon dioxide emission for commercial buildings or districts with high thermal and electric loads during the cooling season.

UR - http://www.scopus.com/inward/record.url?scp=85047099154&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047099154&partnerID=8YFLogxK

U2 - 10.1016/j.apenergy.2018.05.045

DO - 10.1016/j.apenergy.2018.05.045

M3 - Article

AN - SCOPUS:85047099154

VL - 225

SP - 501

EP - 512

JO - Applied Energy

JF - Applied Energy

SN - 0306-2619

ER -