Permeation of Ca2+ through K+ channels in the plasma membrane of Vicia faba guard cells

K. A. Fairley-Grenot, Sarah Mary Assmann

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (-47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Cai) from 200 to 2 n m or increasing the external [Ca2+] (Cao) from 1 to 10 m m increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Cao also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. -160 mV, indicating that the Ca2- block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Cai-, and Cao-dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Cai. Changes in Caoand (associated) changes in Cai regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.

Original languageEnglish (US)
Pages (from-to)103-113
Number of pages11
JournalThe Journal of Membrane Biology
Volume128
Issue number2
DOIs
StatePublished - Jun 1 1992

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Physiology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Permeation of Ca<sup>2+</sup> through K<sup>+</sup> channels in the plasma membrane of Vicia faba guard cells'. Together they form a unique fingerprint.

Cite this