Phase change in a polymer electrolyte fuel cell

Suman Basu, Chao Yang Wang, Ken S. Chen

Research output: Contribution to journalArticle

51 Scopus citations

Abstract

Stable high performance in a polymer electrolyte fuel cell (PEFC) requires efficient removal of product water and heat from the reaction sites. The most important coupling between water and heat transport in PEFC, through the liquid-vapor phase change, remains unexplored. This paper sheds light on physical characteristics of liquid-vapor phase change and its role in PEFC operation. A two-phase, nonisothermal numerical model is used to elucidate the phase-change effects inside the cathode gas diffusion layer (GDL) of a PEFC. Locations of condensation and evaporation are quantified. Operating conditions such as the relative humidity (RH) of inlet gases and materials properties such as the thermal conductivity of GDL are found to have major influence on phase change. Condensation under the cooler land surface is substantially reduced by decreasing the inlet RH or increasing the GDL thermal conductivity. The RH effect is more pronounced near the cell inlet, whereas the GDL thermal conductivity affects the phase-change rate more uniformly throughout the flow length.

Original languageEnglish (US)
Pages (from-to)B748-B756
JournalJournal of the Electrochemical Society
Volume156
Issue number6
DOIs
StatePublished - May 8 2009

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Phase change in a polymer electrolyte fuel cell'. Together they form a unique fingerprint.

  • Cite this