Phosphorus transport in agricultural subsurface drainage: A review

Kevin W. King, Mark R. Williams, Merrin L. Macrae, Norman R. Fausey, Jane Frankenberger, Douglas R. Smith, Peter J.A. Kleinman, Larry C. Brown

Research output: Contribution to journalArticlepeer-review

229 Scopus citations

Abstract

Phosphorus (P) loss from agricultural fields and watersheds has been an important water quality issue for decades because of the critical role P plays in eutrophication. Historically, most research has focused on P losses by surface runoff and erosion because subsurface P losses were often deemed to be negligible. Perceptions of subsurface P transport, however, have evolved, and considerable work has been conducted to better understand the magnitude and importance of subsurface P transport and to identify practices and treatments that decrease subsurface P loads to surface waters. The objectives of this paper were (i) to critically review research on P transport in subsurface drainage, (ii) to determine factors that control P losses, and (iii) to identify gaps in the current scientific understanding of the role of subsurface drainage in P transport. Factors that affect subsurface P transport are discussed within the framework of intensively drained agricultural settings. These factors include soil characteristics (e.g., preferential flow, P sorption capacity, and redox conditions), drainage design (e.g., tile spacing, tile depth, and the installation of surface inlets), prevailing conditions and management (e.g., soil-test P levels, tillage, cropping system, and the source, rate, placement, and timing of P application), and hydrologic and climatic variables (e.g., baseflow, event flow, and seasonal differences). Structural, treatment, and management approaches to mitigate subsurface P transport- such as practices that disconnect flow pathways between surface soils and tile drains, drainage water management, in-stream or end-of-tile treatments, and ditch design and management-are also discussed. The review concludes by identifying gaps in the current understanding of P transport in subsurface drains and suggesting areas where future research is needed.

Original languageEnglish (US)
Pages (from-to)467-485
Number of pages19
JournalJournal of Environmental Quality
Volume44
Issue number2
DOIs
StatePublished - 2015

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution
  • Management, Monitoring, Policy and Law

Fingerprint Dive into the research topics of 'Phosphorus transport in agricultural subsurface drainage: A review'. Together they form a unique fingerprint.

Cite this