Photoionization of hydrogen in atmospheres of magnetic neutron stars

Alexander Y. Potekhin, George G. Pavlov

Research output: Contribution to journalArticle

38 Scopus citations

Abstract

The strong magnetic fields (B ∼ 1012-1013 G) characteristic of neutron stars make all the properties of an atom strongly dependent on the transverse component K of its generalized momentum. In particular, the photoionization process is modified substantially: (1) threshold energies are decreased as compared with those for an atom at rest, (2) cross section values are changed significantly, and (3) selection rules valid for atoms at rest are violated by the motion so that new photoionization channels become allowed. To calculate the photoionization cross sections, we employ, for the first time, exact numerical treatment of both initial and final atomic states. This enables us to take into account the quasi-bound (autoionizing) atomic states as well as coupling of different ionization channels. We extend the previous consideration, restricted to the so-called centered states corresponding to relatively small values of K, to arbitrary states of atomic motion. We fold the cross sections with the thermal distribution of atoms over K. For typical temperatures of neutron star atmospheres, the averaged cross sections differ substantially from those of atoms at rest. In particular, the photoionization edges are strongly broadened by the thermal motion of atoms; this "magnetic broadening" exceeds the usual Doppler broadening by orders of magnitude. The decentered states of the atoms give rise to the low-energy component of the photoionization cross section. This new component grows significantly with increasing temperature above 105.5 K and decreasing density below 1 g cm-3, i.e., for the conditions expected in atmospheres of middle-aged neutron stars.

Original languageEnglish (US)
Pages (from-to)414-425
Number of pages12
JournalAstrophysical Journal
Volume483
Issue number1 PART I
DOIs
StatePublished - Jan 1 1997

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Photoionization of hydrogen in atmospheres of magnetic neutron stars'. Together they form a unique fingerprint.

  • Cite this