Photoluminescence studies of erbium-doped GaAs under hydrostatic pressure

T. D. Culp, U. Hömmerich, Joan Marie Redwing, T. F. Kuech, K. L. Bray

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The photoluminescence properties of metal-organic chemical vapor deposition GaAs:Er were investigated as a function of temperature and applied hydrostatic pressure. The 4I13/2→4I15/2Er3+ emission energy was largely independent of pressures up to 56 kbar and temperatures between 12 and 300 K. Furthermore, no significant change in the low temperature emission intensity was observed at pressures up to and beyond the Γ-X crossover at ∼41 kbar. In contrast, AlxGa1-xAs:Er alloying studies have shown a strong increase in intensity near the Γ-X crossover at x∼0.4. These results suggest that the enhancement is most likely due to a chemical effect related to the presence of Al, such as residual oxygen incorporation, rather than a band structure effect related to the indirect band gap or larger band gap energy. Modeling the temperature dependence of the 1.54 μm Er3+ emission intensity and lifetime at ambient pressure suggested two dominant quenching mechanisms. At temperatures below approximately 150 K, thermal quenching is dominated by a ∼13 meV activation energy process which prevents Er3+ excitation, reducing the intensity, but does not affect the Er3+ ion once it is excited, leaving the lifetime unchanged. At higher temperatures, thermal quenching is governed by a ∼115 meV activation energy process which deactivates the excited Er3+ ion, quenching both the intensity and lifetime. At 42 kbar, the low activation energy process was largely unaffected, whereas the higher activation energy process was significantly reduced. These processes are proposed to be thermal dissociation of the Er-bound exciton, and energy back transfer, respectively. A model is presented in which the Er-related electron trap shifts up in energy at higher pressure, increasing the activation energy to back transfer, but not affecting thermal dissociation of the bound exciton through hole emission.

Original languageEnglish (US)
Pages (from-to)368-374
Number of pages7
JournalJournal of Applied Physics
Volume82
Issue number1
DOIs
StatePublished - Jul 1 1997

Fingerprint

hydrostatic pressure
erbium
activation energy
photoluminescence
quenching
thermal dissociation
life (durability)
crossovers
excitons
chemical effects
alloying
metalorganic chemical vapor deposition
temperature
energy
ions
traps
temperature dependence
augmentation
shift
oxygen

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

Culp, T. D. ; Hömmerich, U. ; Redwing, Joan Marie ; Kuech, T. F. ; Bray, K. L. / Photoluminescence studies of erbium-doped GaAs under hydrostatic pressure. In: Journal of Applied Physics. 1997 ; Vol. 82, No. 1. pp. 368-374.
@article{0abfd3b8301648e097e62c0c090258e0,
title = "Photoluminescence studies of erbium-doped GaAs under hydrostatic pressure",
abstract = "The photoluminescence properties of metal-organic chemical vapor deposition GaAs:Er were investigated as a function of temperature and applied hydrostatic pressure. The 4I13/2→4I15/2Er3+ emission energy was largely independent of pressures up to 56 kbar and temperatures between 12 and 300 K. Furthermore, no significant change in the low temperature emission intensity was observed at pressures up to and beyond the Γ-X crossover at ∼41 kbar. In contrast, AlxGa1-xAs:Er alloying studies have shown a strong increase in intensity near the Γ-X crossover at x∼0.4. These results suggest that the enhancement is most likely due to a chemical effect related to the presence of Al, such as residual oxygen incorporation, rather than a band structure effect related to the indirect band gap or larger band gap energy. Modeling the temperature dependence of the 1.54 μm Er3+ emission intensity and lifetime at ambient pressure suggested two dominant quenching mechanisms. At temperatures below approximately 150 K, thermal quenching is dominated by a ∼13 meV activation energy process which prevents Er3+ excitation, reducing the intensity, but does not affect the Er3+ ion once it is excited, leaving the lifetime unchanged. At higher temperatures, thermal quenching is governed by a ∼115 meV activation energy process which deactivates the excited Er3+ ion, quenching both the intensity and lifetime. At 42 kbar, the low activation energy process was largely unaffected, whereas the higher activation energy process was significantly reduced. These processes are proposed to be thermal dissociation of the Er-bound exciton, and energy back transfer, respectively. A model is presented in which the Er-related electron trap shifts up in energy at higher pressure, increasing the activation energy to back transfer, but not affecting thermal dissociation of the bound exciton through hole emission.",
author = "Culp, {T. D.} and U. H{\"o}mmerich and Redwing, {Joan Marie} and Kuech, {T. F.} and Bray, {K. L.}",
year = "1997",
month = "7",
day = "1",
doi = "10.1063/1.365821",
language = "English (US)",
volume = "82",
pages = "368--374",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "1",

}

Photoluminescence studies of erbium-doped GaAs under hydrostatic pressure. / Culp, T. D.; Hömmerich, U.; Redwing, Joan Marie; Kuech, T. F.; Bray, K. L.

In: Journal of Applied Physics, Vol. 82, No. 1, 01.07.1997, p. 368-374.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Photoluminescence studies of erbium-doped GaAs under hydrostatic pressure

AU - Culp, T. D.

AU - Hömmerich, U.

AU - Redwing, Joan Marie

AU - Kuech, T. F.

AU - Bray, K. L.

PY - 1997/7/1

Y1 - 1997/7/1

N2 - The photoluminescence properties of metal-organic chemical vapor deposition GaAs:Er were investigated as a function of temperature and applied hydrostatic pressure. The 4I13/2→4I15/2Er3+ emission energy was largely independent of pressures up to 56 kbar and temperatures between 12 and 300 K. Furthermore, no significant change in the low temperature emission intensity was observed at pressures up to and beyond the Γ-X crossover at ∼41 kbar. In contrast, AlxGa1-xAs:Er alloying studies have shown a strong increase in intensity near the Γ-X crossover at x∼0.4. These results suggest that the enhancement is most likely due to a chemical effect related to the presence of Al, such as residual oxygen incorporation, rather than a band structure effect related to the indirect band gap or larger band gap energy. Modeling the temperature dependence of the 1.54 μm Er3+ emission intensity and lifetime at ambient pressure suggested two dominant quenching mechanisms. At temperatures below approximately 150 K, thermal quenching is dominated by a ∼13 meV activation energy process which prevents Er3+ excitation, reducing the intensity, but does not affect the Er3+ ion once it is excited, leaving the lifetime unchanged. At higher temperatures, thermal quenching is governed by a ∼115 meV activation energy process which deactivates the excited Er3+ ion, quenching both the intensity and lifetime. At 42 kbar, the low activation energy process was largely unaffected, whereas the higher activation energy process was significantly reduced. These processes are proposed to be thermal dissociation of the Er-bound exciton, and energy back transfer, respectively. A model is presented in which the Er-related electron trap shifts up in energy at higher pressure, increasing the activation energy to back transfer, but not affecting thermal dissociation of the bound exciton through hole emission.

AB - The photoluminescence properties of metal-organic chemical vapor deposition GaAs:Er were investigated as a function of temperature and applied hydrostatic pressure. The 4I13/2→4I15/2Er3+ emission energy was largely independent of pressures up to 56 kbar and temperatures between 12 and 300 K. Furthermore, no significant change in the low temperature emission intensity was observed at pressures up to and beyond the Γ-X crossover at ∼41 kbar. In contrast, AlxGa1-xAs:Er alloying studies have shown a strong increase in intensity near the Γ-X crossover at x∼0.4. These results suggest that the enhancement is most likely due to a chemical effect related to the presence of Al, such as residual oxygen incorporation, rather than a band structure effect related to the indirect band gap or larger band gap energy. Modeling the temperature dependence of the 1.54 μm Er3+ emission intensity and lifetime at ambient pressure suggested two dominant quenching mechanisms. At temperatures below approximately 150 K, thermal quenching is dominated by a ∼13 meV activation energy process which prevents Er3+ excitation, reducing the intensity, but does not affect the Er3+ ion once it is excited, leaving the lifetime unchanged. At higher temperatures, thermal quenching is governed by a ∼115 meV activation energy process which deactivates the excited Er3+ ion, quenching both the intensity and lifetime. At 42 kbar, the low activation energy process was largely unaffected, whereas the higher activation energy process was significantly reduced. These processes are proposed to be thermal dissociation of the Er-bound exciton, and energy back transfer, respectively. A model is presented in which the Er-related electron trap shifts up in energy at higher pressure, increasing the activation energy to back transfer, but not affecting thermal dissociation of the bound exciton through hole emission.

UR - http://www.scopus.com/inward/record.url?scp=0001354375&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001354375&partnerID=8YFLogxK

U2 - 10.1063/1.365821

DO - 10.1063/1.365821

M3 - Article

VL - 82

SP - 368

EP - 374

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 1

ER -