TY - JOUR
T1 - Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits
AU - Kayal, Ehsan
AU - Bentlage, Bastian
AU - Sabrina Pankey, M.
AU - Ohdera, Aki H.
AU - Medina, Monica
AU - Plachetzki, David C.
AU - Collins, Allen G.
AU - Ryan, Joseph F.
N1 - Funding Information:
This work was supported by Peter Buck Fellowships to EK and BB and by NSF EPSCoR grant OIA-1457769 to BB. Partial funding was also provided by the New Hampshire Agricultural Experiment Station and USDA National Institute of Food and Agriculture Hatch Project 00654. This is NHAES Scientific Contribution Number 2759. The funding bodies played no role in the design of the study, or the collection, analysis, interpretation of data or in writing the manuscript.
Funding Information:
This work was supported by Peter Buck Fellowships to EK and BB and by NSF EPSCoR grant OIA-1457769 to BB. Partial funding was also provided by the New Hampshire Agricultural Experiment Station and USDA National Institute of Food and Agriculture Hatch Project 00654. This is NHAES Scientific Contribution Number 2759. The funding bodies played no role in the design of the study, or the collection, analysis, interpretation of data
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/4/13
Y1 - 2018/4/13
N2 - Background: The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all-possible relationships among the major lineages have been proposed. The ecological success of Cnidaria is predicated on several fascinating organismal innovations including stinging cells, symbiosis, colonial body plans and elaborate life histories. However, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome-scale data for each major cnidarian lineage. Results: Here we describe a well-supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome-scale data that includes representatives of all cnidarian classes. Our results are robust to alternative modes of phylogenetic estimation and phylogenomic dataset construction. We show that two popular phylogenomic matrix construction pipelines yield profoundly different datasets, both in the identities and in the functional classes of the loci they include, but resolve the same topology. We then leverage our phylogenetic resolution of Cnidaria to understand the character histories of several critical organismal traits. Ancestral state reconstruction analyses based on our phylogeny establish several notable organismal transitions in the evolutionary history of Cnidaria and depict the ancestral cnidarian as a solitary, non-symbiotic polyp that lacked a medusa stage. In addition, Bayes factor tests strongly suggest that symbiosis has evolved multiple times independently across the cnidarian radiation. Conclusions: Cnidaria have experienced more than 600 million years of independent evolution and in the process generated an array of organismal innovations. Our results add significant clarification on the cnidarian tree of life and the histories of some of these innovations. Further, we confirm the existence of Acraspeda (staurozoans plus scyphozoans and cubozoans), thus reviving an evolutionary hypothesis put forward more than a century ago.
AB - Background: The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all-possible relationships among the major lineages have been proposed. The ecological success of Cnidaria is predicated on several fascinating organismal innovations including stinging cells, symbiosis, colonial body plans and elaborate life histories. However, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome-scale data for each major cnidarian lineage. Results: Here we describe a well-supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome-scale data that includes representatives of all cnidarian classes. Our results are robust to alternative modes of phylogenetic estimation and phylogenomic dataset construction. We show that two popular phylogenomic matrix construction pipelines yield profoundly different datasets, both in the identities and in the functional classes of the loci they include, but resolve the same topology. We then leverage our phylogenetic resolution of Cnidaria to understand the character histories of several critical organismal traits. Ancestral state reconstruction analyses based on our phylogeny establish several notable organismal transitions in the evolutionary history of Cnidaria and depict the ancestral cnidarian as a solitary, non-symbiotic polyp that lacked a medusa stage. In addition, Bayes factor tests strongly suggest that symbiosis has evolved multiple times independently across the cnidarian radiation. Conclusions: Cnidaria have experienced more than 600 million years of independent evolution and in the process generated an array of organismal innovations. Our results add significant clarification on the cnidarian tree of life and the histories of some of these innovations. Further, we confirm the existence of Acraspeda (staurozoans plus scyphozoans and cubozoans), thus reviving an evolutionary hypothesis put forward more than a century ago.
UR - http://www.scopus.com/inward/record.url?scp=85046483393&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046483393&partnerID=8YFLogxK
U2 - 10.1186/s12862-018-1142-0
DO - 10.1186/s12862-018-1142-0
M3 - Article
AN - SCOPUS:85046483393
VL - 18
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
SN - 1471-2148
IS - 1
M1 - 68
ER -