TY - JOUR
T1 - Planetary defense mitigation gateway
T2 - A one-stop gateway for pertinent PD-related contents
AU - Shams, Ishan
AU - Li, Yun
AU - Yang, Jingchao
AU - Yu, Manzhu
AU - Yang, Chaowei
AU - Bambacus, Myra
AU - Lewis, Ruthan
AU - Nuth, Joseph A.
AU - Oman, Luke
AU - Leung, Ronald
AU - Seery, Bernard D.
AU - Plesko, Catherine
AU - Greenaugh, Kevin C.
AU - Syal, Megan B.
N1 - Funding Information:
This project is funded under NASA Studies of Short Time Response Options for Potentially Hazardous Objects (PHOs) through NSF (NNG16PU001) and the NSF Spatiotemporal Innovation Center (IIP-1841520).
Funding Information:
Funding: This project is funded under NASA Studies of Short Time Response Options for Potentially Hazardous Objects (PHOs) through NSF (NNG16PU001) and the NSF Spatiotemporal Innovation Center (IIP-1841520).
Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/6
Y1 - 2019/6
N2 - Planetary Defense (PD) has become a critical effort of protecting our home planet by discovering potentially hazardous objects (PHOs), simulating the potential impact, and mitigating the threats. Due to the lack of structured architecture and framework, pertinent information about detecting and mitigating near earth object (NEO) threats are still dispersed throughout numerous organizations. Scattered and unorganized information can have a significant impact at the time of crisis, resulting in inefficient processes, and decisions made on incomplete data. This PD Mitigation Gateway (pd.cloud.gmu.edu) is developed and embedded within a framework to integrate the dispersed, diverse information residing at different organizations across the world. The gateway offers a home to pertinent PD-related contents and knowledge produced by the NEO mitigation team and the community through (1) a state-of-the-art smart-search discovery engine based on PD knowledge base; (2) a document archiving and understanding mechanism for managing and utilizing the results produced by the PD science community; (3) an evolving PD knowledge base accumulated from existing literature, using natural language processing and machine learning; and (4) a 4D visualization tool that allows the viewers to analyze near-Earth approaches in a three-dimensional environment using dynamic, adjustable PHO parameters to mimic point-of-impact asteroid deflections via space vehicles and particle system simulations. Along with the benefit of accessing dispersed data from a single port, this framework is built to advance discovery, collaboration, innovation, and education across the PD field-of-study, and ultimately decision support.
AB - Planetary Defense (PD) has become a critical effort of protecting our home planet by discovering potentially hazardous objects (PHOs), simulating the potential impact, and mitigating the threats. Due to the lack of structured architecture and framework, pertinent information about detecting and mitigating near earth object (NEO) threats are still dispersed throughout numerous organizations. Scattered and unorganized information can have a significant impact at the time of crisis, resulting in inefficient processes, and decisions made on incomplete data. This PD Mitigation Gateway (pd.cloud.gmu.edu) is developed and embedded within a framework to integrate the dispersed, diverse information residing at different organizations across the world. The gateway offers a home to pertinent PD-related contents and knowledge produced by the NEO mitigation team and the community through (1) a state-of-the-art smart-search discovery engine based on PD knowledge base; (2) a document archiving and understanding mechanism for managing and utilizing the results produced by the PD science community; (3) an evolving PD knowledge base accumulated from existing literature, using natural language processing and machine learning; and (4) a 4D visualization tool that allows the viewers to analyze near-Earth approaches in a three-dimensional environment using dynamic, adjustable PHO parameters to mimic point-of-impact asteroid deflections via space vehicles and particle system simulations. Along with the benefit of accessing dispersed data from a single port, this framework is built to advance discovery, collaboration, innovation, and education across the PD field-of-study, and ultimately decision support.
UR - http://www.scopus.com/inward/record.url?scp=85070936835&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070936835&partnerID=8YFLogxK
U2 - 10.3390/data4020047
DO - 10.3390/data4020047
M3 - Article
AN - SCOPUS:85070936835
VL - 4
JO - Data
JF - Data
SN - 2306-5729
IS - 2
M1 - 47
ER -