Plant and soil carbon accumulation following fire in Mediterranean woodlands in Spain

Jason Philip Kaye, Joan Romanyà, V. Ramón Vallejo

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


We measured plant and soil carbon (C) storage following canopy-replacing wildfires in woodlands of northeastern Spain that include an understory of shrubs dominated by Quercus coccifera and an overstory of Pinus halepensis trees. Established plant succession models predict rapid shrub recovery in these ecosystems, and we build on this model by contrasting shrub succession with long-term C storage in soils, trees, and the whole ecosystem. We used chronosequence and repeated sampling approaches to detect change over time. Aboveground plant C increased from <100 to ~3,000 g C m-2 over 30 years following fire, which is substantially less than the 5,942 ± 487 g C m-2 (mean ±1 standard error) in unburned sites. As expected, shrubs accumulated C rapidly, but the capacity for C storage in shrubs was <600 g C m-2. Pines were the largest plant C pool in sites >20 years post fire, and accounted for all of the difference in plant C between older burned sites and unburned sites. In contrast, soil C was initially higher in burned sites (~4,500 g C m-2) than in unburned sites (3,264 ± 261 g C m-2) but burned site C declined to unburned levels within 10 years after fire. Combining these results with prior research suggests two states for C storage. When pine regeneration is successful, ~9,200 g C m-2 accumulate in woodlands but when tree regeneration fails (due to microclimatic stress or short fire return intervals), ecosystem C storage of ~4,000 g C m-2 will occur in the resulting shrublands.

Original languageEnglish (US)
Pages (from-to)533-543
Number of pages11
Issue number2
StatePublished - 2010

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics


Dive into the research topics of 'Plant and soil carbon accumulation following fire in Mediterranean woodlands in Spain'. Together they form a unique fingerprint.

Cite this