TY - JOUR
T1 - Plasma surface modification of P(VDF-TrFE)
T2 - Influence of surface chemistry and structure on electronic charge injection
AU - Vecchio, Michael A.
AU - Meddeb, Amira Barhoumi
AU - Lanagan, Michael T.
AU - Ounaies, Zoubeida
AU - Shallenberger, Jeffrey R.
N1 - Funding Information:
The authors of this publication would like to acknowledge the support of the National Science Foundation as part of the Center for Dielectrics and Piezoelectrics under Grant Nos. IIP-1361571 and IIP-1361503.
Publisher Copyright:
© 2018 Author(s).
PY - 2018/9/21
Y1 - 2018/9/21
N2 - Reactive ion plasma treatments have been used to alter the high field electrical properties of organic dielectrics via a grafting process of chemical species within the plasma to the surface of the dielectric. This study determines the effect of a CF4/O2 plasma based processing procedure on polyvinylidene fluoride trifluoroethylene [P(VDF-TrFE)] on low and high field electrical performance. Plasma treatment in conjunction with a thermal annealing procedure is analyzed in the following ways: X-ray Photoelectron Spectroscopy to determine the changes in surface chemistry of films post plasma treatment, optical profilometry to measure evolution in surface topology, water contact angle to track surface polarity as a function of plasma treatment time, and current-voltage measurements at low and high-fields to capture the electrical behavior of the films. The results indicate that plasma treatment causes the chemical modification of P(VDF-TrFE) surface through the addition of carbonyl (C=O) groups, as well as oxygen and fluorine based moieties (CF-O, C-O) which are dependent on processing condition. Contact angle with water shows an increase as a function of plasma treatment time from ∼84° to 111° in plasma treated films, indicating decreased surface polarity after plasma treatment. Finally, plasma treatment decreases film resistivity by one order of magnitude, from 8.0 × 1011 Ω m in untreated control samples to 0.8 × 1011 Ω m, as well as resulted in enhanced Schottky emission caused by decreased Schottky barrier height. Modeling I(V) data using both a surface limited (Schottky) and bulk limited (Poole-Frenkel) approaches suggest that conduction in P(VDF-TrFE) thin films results from Schottky emission and is dependent on the chemical environment of the metal/dielectric contact. This study ultimately demonstrates the ability to alter the electrical properties by plasma surface treatment and also the importance of surface chemistry in organic dielectrics to control conduction through the material for high energy and power applications.
AB - Reactive ion plasma treatments have been used to alter the high field electrical properties of organic dielectrics via a grafting process of chemical species within the plasma to the surface of the dielectric. This study determines the effect of a CF4/O2 plasma based processing procedure on polyvinylidene fluoride trifluoroethylene [P(VDF-TrFE)] on low and high field electrical performance. Plasma treatment in conjunction with a thermal annealing procedure is analyzed in the following ways: X-ray Photoelectron Spectroscopy to determine the changes in surface chemistry of films post plasma treatment, optical profilometry to measure evolution in surface topology, water contact angle to track surface polarity as a function of plasma treatment time, and current-voltage measurements at low and high-fields to capture the electrical behavior of the films. The results indicate that plasma treatment causes the chemical modification of P(VDF-TrFE) surface through the addition of carbonyl (C=O) groups, as well as oxygen and fluorine based moieties (CF-O, C-O) which are dependent on processing condition. Contact angle with water shows an increase as a function of plasma treatment time from ∼84° to 111° in plasma treated films, indicating decreased surface polarity after plasma treatment. Finally, plasma treatment decreases film resistivity by one order of magnitude, from 8.0 × 1011 Ω m in untreated control samples to 0.8 × 1011 Ω m, as well as resulted in enhanced Schottky emission caused by decreased Schottky barrier height. Modeling I(V) data using both a surface limited (Schottky) and bulk limited (Poole-Frenkel) approaches suggest that conduction in P(VDF-TrFE) thin films results from Schottky emission and is dependent on the chemical environment of the metal/dielectric contact. This study ultimately demonstrates the ability to alter the electrical properties by plasma surface treatment and also the importance of surface chemistry in organic dielectrics to control conduction through the material for high energy and power applications.
UR - http://www.scopus.com/inward/record.url?scp=85053879760&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053879760&partnerID=8YFLogxK
U2 - 10.1063/1.5042751
DO - 10.1063/1.5042751
M3 - Article
AN - SCOPUS:85053879760
SN - 0021-8979
VL - 124
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 11
M1 - 114102
ER -