Plasmon-Mediated Chiroptical Second Harmonic Generation from Seemingly Achiral Gold Nanorods

Zehua Li, Lei Kang, Robert W. Lord, Kyoungweon Park, Andrew Gillman, Richard A. Vaia, Raymond E. Schaak, Douglas H. Werner, Kenneth L. Knappenberger

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Throughout nature, simple rules explain complex phenomena, such as the selective interaction of chiral objects with circularly polarized light. Here, we demonstrate chiroptical signals from gold nanorods, which are seemingly achiral structures. Shape anisotropy due to atomic-level faceting and rounding at the tips of nanorods, which are free of chiral surface ligands, induces linear-to-circular polarization modulation during second harmonic generation. The intrinsic nanorod chiroptical response is increased by plasmon-resonant excitation, which preferentially amplifies circularly polarized harmonic signals. This structure-plasmon interplay is uniquely resolved by polarization-resolved second harmonic generation measurements. The material's second-order polarizability is the product of the structure-dependent lattice-normal susceptibility and local surface plasmon field vectors. Synthetically scalable plasmon-supporting nanorods that amplify small circular dichroism signals provide a simple, assembly-free platform for chiroptical transduction.

Original languageEnglish (US)
Pages (from-to)32-39
Number of pages8
JournalACS Nanoscience Au
Volume2
Issue number1
DOIs
StatePublished - Feb 16 2022

All Science Journal Classification (ASJC) codes

  • Chemistry (miscellaneous)
  • Materials Science (miscellaneous)

Fingerprint

Dive into the research topics of 'Plasmon-Mediated Chiroptical Second Harmonic Generation from Seemingly Achiral Gold Nanorods'. Together they form a unique fingerprint.

Cite this