TY - GEN
T1 - Point-of-interest recommendation
T2 - 27th ACM International Conference on Information and Knowledge Management, CIKM 2018
AU - Ma, Chen
AU - Wang, Qinglong
AU - Zhang, Yingxue
AU - Liu, Xue
N1 - Funding Information:
The authors appreciate the anonymous reviewers for the careful reviews and constructive suggestions. The authors also thank Dr. Xi Chen and Dr. Mingyuan Xia for their comments on this work.
PY - 2018/10/17
Y1 - 2018/10/17
N2 - The rapid growth of Location-based Social Networks (LBSNs) provides a great opportunity to satisfy the strong demand for personalized Point-of-Interest (POI) recommendation services. However, with the tremendous increase of users and POIs, POI recommender systems still face several challenging problems: (1) the hardness of modeling complex user-POI interactions from sparse implicit feedback; (2) the difficulty of incorporating the geographical context information. To cope with these challenges, we propose a novel autoencoder-based model to learn the complex user-POI relations, namely SAE-NAD, which consists of a self-attentive encoder (SAE) and a neighbor-aware decoder (NAD). In particular, unlike previous works equally treat users' checked-in POIs, our self-attentive encoder adaptively differentiates the user preference degrees in multiple aspects, by adopting a multi-dimensional attention mechanism. To incorporate the geographical context information, we propose a neighbor-aware decoder to make users' reachability higher on the similar and nearby neighbors of checked-in POIs, which is achieved by the inner product of POI embeddings together with the radial basis function (RBF) kernel. To evaluate the proposed model, we conduct extensive experiments on three real-world datasets with many state-of-the-art methods and evaluation metrics. The experimental results demonstrate the effectiveness of our model.
AB - The rapid growth of Location-based Social Networks (LBSNs) provides a great opportunity to satisfy the strong demand for personalized Point-of-Interest (POI) recommendation services. However, with the tremendous increase of users and POIs, POI recommender systems still face several challenging problems: (1) the hardness of modeling complex user-POI interactions from sparse implicit feedback; (2) the difficulty of incorporating the geographical context information. To cope with these challenges, we propose a novel autoencoder-based model to learn the complex user-POI relations, namely SAE-NAD, which consists of a self-attentive encoder (SAE) and a neighbor-aware decoder (NAD). In particular, unlike previous works equally treat users' checked-in POIs, our self-attentive encoder adaptively differentiates the user preference degrees in multiple aspects, by adopting a multi-dimensional attention mechanism. To incorporate the geographical context information, we propose a neighbor-aware decoder to make users' reachability higher on the similar and nearby neighbors of checked-in POIs, which is achieved by the inner product of POI embeddings together with the radial basis function (RBF) kernel. To evaluate the proposed model, we conduct extensive experiments on three real-world datasets with many state-of-the-art methods and evaluation metrics. The experimental results demonstrate the effectiveness of our model.
UR - http://www.scopus.com/inward/record.url?scp=85058014235&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85058014235&partnerID=8YFLogxK
U2 - 10.1145/3269206.3271733
DO - 10.1145/3269206.3271733
M3 - Conference contribution
AN - SCOPUS:85058014235
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 697
EP - 706
BT - CIKM 2018 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management
A2 - Paton, Norman
A2 - Candan, Selcuk
A2 - Wang, Haixun
A2 - Allan, James
A2 - Agrawal, Rakesh
A2 - Labrinidis, Alexandros
A2 - Cuzzocrea, Alfredo
A2 - Zaki, Mohammed
A2 - Srivastava, Divesh
A2 - Broder, Andrei
A2 - Schuster, Assaf
PB - Association for Computing Machinery
Y2 - 22 October 2018 through 26 October 2018
ER -