Polynomial parametrization of pythagorean tuples

Leonid Vaserstein, Takis Sakkalis, Sophie Frisch

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

A Pythagorean (k, l)-tuple over a commutative ring A is a vector x = (xi) ∈ Ak+l, where k, l ∈ , k < l which satisfies σi = 1k xi2 = σi= 1lk+i. In this paper, a polynomial parametrization of Pythagorean (k, l)-tuples over the ring F[t] is given, for l < 2. In the case where l = 1, solutions of the above equation are provided for k = 2, 3, 4, 5, and 9.

Original languageEnglish (US)
Pages (from-to)1261-1272
Number of pages12
JournalInternational Journal of Number Theory
Volume6
Issue number6
DOIs
StatePublished - Sep 1 2010

Fingerprint

Commutative Ring
Parametrization
Ring
Polynomial

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cite this

Vaserstein, Leonid ; Sakkalis, Takis ; Frisch, Sophie. / Polynomial parametrization of pythagorean tuples. In: International Journal of Number Theory. 2010 ; Vol. 6, No. 6. pp. 1261-1272.
@article{6f619b39fe1342c293d676088c972b85,
title = "Polynomial parametrization of pythagorean tuples",
abstract = "A Pythagorean (k, l)-tuple over a commutative ring A is a vector x = (xi) ∈ Ak+l, where k, l ∈ , k < l which satisfies σi = 1k xi2 = σi= 1lk+i. In this paper, a polynomial parametrization of Pythagorean (k, l)-tuples over the ring F[t] is given, for l < 2. In the case where l = 1, solutions of the above equation are provided for k = 2, 3, 4, 5, and 9.",
author = "Leonid Vaserstein and Takis Sakkalis and Sophie Frisch",
year = "2010",
month = "9",
day = "1",
doi = "10.1142/S1793042110003496",
language = "English (US)",
volume = "6",
pages = "1261--1272",
journal = "International Journal of Number Theory",
issn = "1793-0421",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "6",

}

Polynomial parametrization of pythagorean tuples. / Vaserstein, Leonid; Sakkalis, Takis; Frisch, Sophie.

In: International Journal of Number Theory, Vol. 6, No. 6, 01.09.2010, p. 1261-1272.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Polynomial parametrization of pythagorean tuples

AU - Vaserstein, Leonid

AU - Sakkalis, Takis

AU - Frisch, Sophie

PY - 2010/9/1

Y1 - 2010/9/1

N2 - A Pythagorean (k, l)-tuple over a commutative ring A is a vector x = (xi) ∈ Ak+l, where k, l ∈ , k < l which satisfies σi = 1k xi2 = σi= 1lk+i. In this paper, a polynomial parametrization of Pythagorean (k, l)-tuples over the ring F[t] is given, for l < 2. In the case where l = 1, solutions of the above equation are provided for k = 2, 3, 4, 5, and 9.

AB - A Pythagorean (k, l)-tuple over a commutative ring A is a vector x = (xi) ∈ Ak+l, where k, l ∈ , k < l which satisfies σi = 1k xi2 = σi= 1lk+i. In this paper, a polynomial parametrization of Pythagorean (k, l)-tuples over the ring F[t] is given, for l < 2. In the case where l = 1, solutions of the above equation are provided for k = 2, 3, 4, 5, and 9.

UR - http://www.scopus.com/inward/record.url?scp=77957550836&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77957550836&partnerID=8YFLogxK

U2 - 10.1142/S1793042110003496

DO - 10.1142/S1793042110003496

M3 - Article

AN - SCOPUS:77957550836

VL - 6

SP - 1261

EP - 1272

JO - International Journal of Number Theory

JF - International Journal of Number Theory

SN - 1793-0421

IS - 6

ER -