Power Dissipation Due to Vibration-Induced Disturbances in maglev Superconducting Magnets

E. A. Scholle, Justin Schwartz

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


An important issue for electrodynamic maglev operation is quenching of the superconducting magnets induced by interactions with the guideway. Such quenching limited the velocity of the MLU002 maglev in Japan. Here we study one of the mechanisms by which the SCM-ground coil interactions affect the thermal stability of maglev SCM’s. The time-varying forces are determined from the SCM-ground coil interaction and used to drive the vibration of the SCM. The damping of the vibration determines the power dissipated to the conductor and the coolant. The power dissipated within the conductor is used as input to the one-dimensional thermal stability analysis, based on the minimum propagating zone theory. The power dissipation due to the vibration-induced disturbances contributed to the thermal load of the MLU002 conductor, but was not sufficient to quench the magnets.

Original languageEnglish (US)
Pages (from-to)205-210
Number of pages6
JournalIEEE Transactions on Applied Superconductivity
Issue number4
StatePublished - Dec 1994

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Power Dissipation Due to Vibration-Induced Disturbances in maglev Superconducting Magnets'. Together they form a unique fingerprint.

Cite this