PPAR-α-null mice are protected from high-fat diet-induced insulin resistance

Michèle Guerre-Millo, Christine Rouault, Philippe Poulain, Jocelyne André, Vincent Poitout, Jeffrey M. Peters, Frank J. Gonzalez, Jean Charles Fruchart, Gérard Reach, Bart Staels

Research output: Contribution to journalArticlepeer-review

198 Scopus citations

Abstract

Peroxisome proliferator-activated receptor (PPAR)-α controls the expression of genes involved in lipid metabolism. PPAR-α furthermore participates to maintain blood glucose during acute metabolic stress, as shown in PPAR-α-null mice, which develop severe hypoglycemia when fasted. Here, we assessed a potential role for PPAR-α in glucose homeostasis in response to long-term high-fat feeding. When subjected to this nutritional challenge, PPAR-α-null mice remained normoglycemic and normoinsulinemic, whereas wild-type mice became hyperinsulinemic (190%; P < 0.05) and slightly hyperglycemic (120%; NS). Insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) were performed to evaluate insulin resistance (IR). Under standard diet, the response to both tests was similar in wild-type and PPAR-α-null mice. Under high-fat diet, however, the efficiency of insulin in ITT was reduced and the amount of hyperglycemia in GTT was increased only in wild-type and not in PPAR-α-null mice. The IR index, calculated as the product of the areas under glucose and insulin curves in GTT, increased fourfold in high-fat-fed wild-type mice, whereas it remained unchanged in PPAR-α-null mice. In contrast, PPAR-α deficiency allowed the twofold rise in adiposity and blood leptin levels elicited by the diet. Thus, the absence of PPAR-α dissociates IR from high-fat diet-induced increase in adiposity. The effects of PPAR-α deficiency on glucose homeostasis seem not to occur via the pancreas, because glucose-stimulated insulin secretion of islets was not influenced by the PPAR-α genotype. These data suggest that PPAR-α plays a role for the development of IR in response to a Western-type high-fat diet.

Original languageEnglish (US)
Pages (from-to)2809-2814
Number of pages6
JournalDiabetes
Volume50
Issue number12
DOIs
StatePublished - Dec 2001

All Science Journal Classification (ASJC) codes

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Fingerprint Dive into the research topics of 'PPAR-α-null mice are protected from high-fat diet-induced insulin resistance'. Together they form a unique fingerprint.

Cite this