ppGpp ribosome dimerization model for bacterial persister formation and resuscitation

Sooyeon Song, Thomas K. Wood

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Stress is ubiquitous for bacteria and can convert a subpopulation of cells into a dormant state known as persistence, in which cells are tolerant to antimicrobials. These cells revive rapidly when the stress is removed and are likely the cause of many recurring infections such as those associated with tuberculosis, cystic fibrosis, and Lyme disease. However, how persister cells are formed is not understood well. Here we propose the ppGpp ribosome dimerization persister (PRDP) model in which the alarmone guanosine pentaphosphate/tetraphosphate (henceforth ppGpp) generates persister cells directly by inactivating ribosomes via the ribosome modulation factor (RMF), the hibernation promoting factor (Hpf), and the ribosome-associated inhibitor (RaiA). We demonstrate that persister cells contain a large fraction of 100S ribosomes, that inactivation of RMF, HpF, and RaiA reduces persistence and increases single-cell persister resuscitation and that ppGpp has no effect on single-cell persister resuscitation. Hence, a direct connection between ppGpp and persistence is shown along with evidence of the importance of ribosome dimerization in persistence and for active ribosomes during resuscitation.

Original languageEnglish (US)
Pages (from-to)281-286
Number of pages6
JournalBiochemical and Biophysical Research Communications
Volume523
Issue number2
DOIs
StatePublished - Mar 5 2020

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'ppGpp ribosome dimerization model for bacterial persister formation and resuscitation'. Together they form a unique fingerprint.

Cite this