Prediction and experimental validation of in-plane current distribution between channel and land in a PEFC

Jun Li, Chao-yang Wang, Ay Su

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

A nonisothermal, two-phase model for polymer electrolyte fuel cells is validated against the experimental data of in-plane current density profiles. Overall, good agreement is achieved between predicted and measured current density distributions between the channel and land with submillimeter resolution. Numerical simulations clearly show that the in-plane current profile results from the interplay between the ohmic control and mass transport control, both of which depend strongly on the two-phase water transport along the in-plane direction. Under relatively dry and large stoichiometric conditions, the current density peak is seen to shift from under the land to under the channel with increasing average current density, signifying control by membrane resistance at low current densities but by oxygen diffusion at high current densities. Finally, the validated model reveals the dramatic influence of the channel/land width and gas diffusion layer compression on the in-plane current density profile, thus underscoring the necessity to match these two key parameters in experimental measurements of in-plane current distribution.

Original languageEnglish (US)
JournalJournal of the Electrochemical Society
Volume155
Issue number1
DOIs
StatePublished - 2008

Fingerprint

current distribution
Current density
current density
predictions
profiles
gaseous diffusion
Diffusion in gases
low currents
Electrolytes
fuel cells
high current
density distribution
Fuel cells
Polymers
Mass transfer
electrolytes
Oxygen
membranes
Membranes
Water

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Materials Chemistry
  • Electrochemistry

Cite this

@article{eb83280959724cc2b14e8f5975b5bd20,
title = "Prediction and experimental validation of in-plane current distribution between channel and land in a PEFC",
abstract = "A nonisothermal, two-phase model for polymer electrolyte fuel cells is validated against the experimental data of in-plane current density profiles. Overall, good agreement is achieved between predicted and measured current density distributions between the channel and land with submillimeter resolution. Numerical simulations clearly show that the in-plane current profile results from the interplay between the ohmic control and mass transport control, both of which depend strongly on the two-phase water transport along the in-plane direction. Under relatively dry and large stoichiometric conditions, the current density peak is seen to shift from under the land to under the channel with increasing average current density, signifying control by membrane resistance at low current densities but by oxygen diffusion at high current densities. Finally, the validated model reveals the dramatic influence of the channel/land width and gas diffusion layer compression on the in-plane current density profile, thus underscoring the necessity to match these two key parameters in experimental measurements of in-plane current distribution.",
author = "Jun Li and Chao-yang Wang and Ay Su",
year = "2008",
doi = "10.1149/1.2801977",
language = "English (US)",
volume = "155",
journal = "Journal of the Electrochemical Society",
issn = "0013-4651",
publisher = "Electrochemical Society, Inc.",
number = "1",

}

TY - JOUR

T1 - Prediction and experimental validation of in-plane current distribution between channel and land in a PEFC

AU - Li, Jun

AU - Wang, Chao-yang

AU - Su, Ay

PY - 2008

Y1 - 2008

N2 - A nonisothermal, two-phase model for polymer electrolyte fuel cells is validated against the experimental data of in-plane current density profiles. Overall, good agreement is achieved between predicted and measured current density distributions between the channel and land with submillimeter resolution. Numerical simulations clearly show that the in-plane current profile results from the interplay between the ohmic control and mass transport control, both of which depend strongly on the two-phase water transport along the in-plane direction. Under relatively dry and large stoichiometric conditions, the current density peak is seen to shift from under the land to under the channel with increasing average current density, signifying control by membrane resistance at low current densities but by oxygen diffusion at high current densities. Finally, the validated model reveals the dramatic influence of the channel/land width and gas diffusion layer compression on the in-plane current density profile, thus underscoring the necessity to match these two key parameters in experimental measurements of in-plane current distribution.

AB - A nonisothermal, two-phase model for polymer electrolyte fuel cells is validated against the experimental data of in-plane current density profiles. Overall, good agreement is achieved between predicted and measured current density distributions between the channel and land with submillimeter resolution. Numerical simulations clearly show that the in-plane current profile results from the interplay between the ohmic control and mass transport control, both of which depend strongly on the two-phase water transport along the in-plane direction. Under relatively dry and large stoichiometric conditions, the current density peak is seen to shift from under the land to under the channel with increasing average current density, signifying control by membrane resistance at low current densities but by oxygen diffusion at high current densities. Finally, the validated model reveals the dramatic influence of the channel/land width and gas diffusion layer compression on the in-plane current density profile, thus underscoring the necessity to match these two key parameters in experimental measurements of in-plane current distribution.

UR - http://www.scopus.com/inward/record.url?scp=36448929856&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36448929856&partnerID=8YFLogxK

U2 - 10.1149/1.2801977

DO - 10.1149/1.2801977

M3 - Article

VL - 155

JO - Journal of the Electrochemical Society

JF - Journal of the Electrochemical Society

SN - 0013-4651

IS - 1

ER -