Prediction of fracture limits of Ni–Cr based alloy under warm forming condition using ductile damage models and numerical method

Ayush MORCHHALE, Anand BADRISH, Nitin KOTKUNDE, Swadesh Kumar SINGH, Navneet KHANNA, Ambuj SAXENA, Chetan NIKHARE

Research output: Contribution to journalArticlepeer-review

Abstract

The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy. The experimentally obtained strain-based fracture forming limit diagram (FFLD) was transformed into a stress-based (σ-FFLD) and effective plastic strain (EPS) vs triaxiality (η) plot to remove the excess dependency of fracture limits over the strains. For the prediction of fracture limits, seven different damage models were calibrated. The Oh model displayed the best ability to predict the fracture locus with the least absolute error. Though the experimentally obtained fracture limits have only been used for the numerical analysis, none of the considered damage models predicted the fracture strains over the entire considered range of stress triaxiality (0.33<η<0.66). The deep drawing process window helped to determine wrinkling, safe and fracture zones while drawing the cylindrical cups under different temperature and lubricating conditions. Further, the highest drawing ratio of 2 was achieved at 673 K under the lubricating condition. All the numerically predicted results of both stretch forming and deep drawing processes using the Hill 1948 anisotropic yielding function were found to be good within the acceptable range of error.

Original languageEnglish (US)
Pages (from-to)2372-2387
Number of pages16
JournalTransactions of Nonferrous Metals Society of China (English Edition)
Volume31
Issue number8
DOIs
StatePublished - Aug 2021

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Geotechnical Engineering and Engineering Geology
  • Metals and Alloys
  • Materials Chemistry

Cite this