## Abstract

Mathematical modelings of many electric and mechanical systems involve piecewise linear system. Piecewise linear system can possess a periodic solution called a limit-cycle oscillation (LCO), which can seriously undermine the system performance. Therefore, how to analyze LCO and its parameters in piecewise linear systems is one of the primary concerns for the control and system engineers. This work presents a novel framework to predict and analyze LCO of piecewise linear systems, focused on systems with multiple piecewise nonlinearities. On top of the well-known piecewise linear analysis, the Floquet theory is applied to identify LCO parameters and determine the stability of the LCO. The introduction of Floquet theory to piecewise linear systems is allowed through transforming piecewise nonlinearities to corresponding equivalent analytic functions. In addition, the establishment of switching equation provides another necessary condition to predict LCO parameters. An example of a realistic flight control system is taken to demonstrate the effectiveness and efficiency of authors' framework.

Original language | English (US) |
---|---|

Pages (from-to) | 110-125 |

Number of pages | 16 |

Journal | IET Control Theory and Applications |

Volume | 15 |

Issue number | 1 |

DOIs | |

State | Published - Jan 2021 |

## All Science Journal Classification (ASJC) codes

- Control and Systems Engineering
- Human-Computer Interaction
- Computer Science Applications
- Control and Optimization
- Electrical and Electronic Engineering