### Abstract

The asymptotic a.s.-relation H = lim_{n→∞} n log n ÷ Σ_{i=1}
^{n} L_{i}
^{n} (X) is derived for any finite-valued stationary ergodic process X = (X_{n}, n ∈ Z) that satisfies a Doeblin-type condition: there exists r ≥ 1 such that ess_{x}inf P(X_{n+r}

Original language | English (US) |
---|---|

State | Published - Dec 1 1994 |

Event | Proceedings of the 1994 IEEE International Symposium on Information Theory - Trodheim, Norw Duration: Jun 27 1994 → Jul 1 1994 |

### Other

Other | Proceedings of the 1994 IEEE International Symposium on Information Theory |
---|---|

City | Trodheim, Norw |

Period | 6/27/94 → 7/1/94 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Theoretical Computer Science
- Information Systems
- Modeling and Simulation
- Applied Mathematics

### Cite this

*Prefixes and the entropy rate for long-range sources*. Paper presented at Proceedings of the 1994 IEEE International Symposium on Information Theory, Trodheim, Norw, .

}

**Prefixes and the entropy rate for long-range sources.** / Kontoyiannis, Ioannis; Soukhov, Iouri M.

Research output: Contribution to conference › Paper

TY - CONF

T1 - Prefixes and the entropy rate for long-range sources

AU - Kontoyiannis, Ioannis

AU - Soukhov, Iouri M.

PY - 1994/12/1

Y1 - 1994/12/1

N2 - The asymptotic a.s.-relation H = limn→∞ n log n ÷ Σi=1 n Li n (X) is derived for any finite-valued stationary ergodic process X = (Xn, n ∈ Z) that satisfies a Doeblin-type condition: there exists r ≥ 1 such that essxinf P(Xn+r

AB - The asymptotic a.s.-relation H = limn→∞ n log n ÷ Σi=1 n Li n (X) is derived for any finite-valued stationary ergodic process X = (Xn, n ∈ Z) that satisfies a Doeblin-type condition: there exists r ≥ 1 such that essxinf P(Xn+r

UR - http://www.scopus.com/inward/record.url?scp=0028715134&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028715134&partnerID=8YFLogxK

M3 - Paper

ER -