Probing the molecular-level control of aluminosilicate dissolution

A sensitive solid-state NMR proxy for reactive surface area

Nancy M. Washton, Susan Louise Brantley, Karl Todd Mueller

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

For two suites of volcanic aluminosilicate glasses, the accessible and reactive sites for covalent attachment of the fluorine-containing (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS) probe molecule were measured by quantitative 19F nuclear magnetic resonance (NMR) spectroscopy. The first set of samples consists of six rhyolitic and dacitic glasses originating from volcanic activity in Iceland and one rhyolitic glass from the Bishop Tuff, CA. Due to differences in the reactive species present on the surfaces of these glasses, variations in the rate of acid-mediated dissolution (pH 4) for samples in this suite cannot be explained by variations in geometric or BET-measured surface area. In contrast, the rates scale directly with the surface density of TFS-reactive sites as measured by solid-state NMR. These data are consistent with the inference that the TFS-reactive M-OH species on the glass surface, which are known to be non-hydrogen-bonded Q3 groups, represent loci accessible to and affected by proton-mediated dissolution. The second suite of samples, originating from a chronosequence in Kozushima, Japan, is comprised of four rhyolites that have been weathered for 1.1, 1.8, 26, and 52 ka. The number of TFS-reactive sites per gram increases with duration of weathering in the laboratory for the "Icelandic" samples and with duration of field weathering for both "Icelandic" and Japanese samples. One hypothesis is consistent with these and published modeling, laboratory, and field observations: over short timescales, dissolution is controlled by fast-dissolving sites, but over long timescales, dissolution is controlled by slower-dissolving sites, the surface density of which is proportional to the number of TFS-reactive Q3 sites. These latter sites are not part of a hydrogen-bonded network on the surface of the glasses, and measurement of their surface site density allows predictions of trends in reactive surface area. The TFS treatment method, which is easily monitored by quantitative 19F solid-state NMR, therefore provides a chemically specific and quantifiable proxy to understand the nature of how sites on dissolving silicates control dissolution. Furthermore, 27Al NMR techniques are shown here to be useful in identifying clays on the glass surfaces, and these methods are therefore effective for quantifying concentrations of weathering impurities. Our interpretations offer a testable hypothesis for the mechanism of proton-promoted dissolution for low-iron aluminosilicate minerals and glasses and suggest that future investigations of reactive surfaces with high-sensitivity NMR techniques are warranted.

Original languageEnglish (US)
Pages (from-to)5949-5961
Number of pages13
JournalGeochimica et Cosmochimica Acta
Volume72
Issue number24
DOIs
StatePublished - Dec 15 2008

Fingerprint

Level control
aluminosilicate
nuclear magnetic resonance
Dissolution
surface area
glass
dissolution
Nuclear magnetic resonance
Glass
Weathering
weathering
Protons
timescale
solid state
chronosequence
fluorine
Silicates
tuff
Fluorine
silicate

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology

Cite this

@article{5eb745a093a24edc92afff48bc4c8ca1,
title = "Probing the molecular-level control of aluminosilicate dissolution: A sensitive solid-state NMR proxy for reactive surface area",
abstract = "For two suites of volcanic aluminosilicate glasses, the accessible and reactive sites for covalent attachment of the fluorine-containing (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS) probe molecule were measured by quantitative 19F nuclear magnetic resonance (NMR) spectroscopy. The first set of samples consists of six rhyolitic and dacitic glasses originating from volcanic activity in Iceland and one rhyolitic glass from the Bishop Tuff, CA. Due to differences in the reactive species present on the surfaces of these glasses, variations in the rate of acid-mediated dissolution (pH 4) for samples in this suite cannot be explained by variations in geometric or BET-measured surface area. In contrast, the rates scale directly with the surface density of TFS-reactive sites as measured by solid-state NMR. These data are consistent with the inference that the TFS-reactive M-OH species on the glass surface, which are known to be non-hydrogen-bonded Q3 groups, represent loci accessible to and affected by proton-mediated dissolution. The second suite of samples, originating from a chronosequence in Kozushima, Japan, is comprised of four rhyolites that have been weathered for 1.1, 1.8, 26, and 52 ka. The number of TFS-reactive sites per gram increases with duration of weathering in the laboratory for the {"}Icelandic{"} samples and with duration of field weathering for both {"}Icelandic{"} and Japanese samples. One hypothesis is consistent with these and published modeling, laboratory, and field observations: over short timescales, dissolution is controlled by fast-dissolving sites, but over long timescales, dissolution is controlled by slower-dissolving sites, the surface density of which is proportional to the number of TFS-reactive Q3 sites. These latter sites are not part of a hydrogen-bonded network on the surface of the glasses, and measurement of their surface site density allows predictions of trends in reactive surface area. The TFS treatment method, which is easily monitored by quantitative 19F solid-state NMR, therefore provides a chemically specific and quantifiable proxy to understand the nature of how sites on dissolving silicates control dissolution. Furthermore, 27Al NMR techniques are shown here to be useful in identifying clays on the glass surfaces, and these methods are therefore effective for quantifying concentrations of weathering impurities. Our interpretations offer a testable hypothesis for the mechanism of proton-promoted dissolution for low-iron aluminosilicate minerals and glasses and suggest that future investigations of reactive surfaces with high-sensitivity NMR techniques are warranted.",
author = "Washton, {Nancy M.} and Brantley, {Susan Louise} and Mueller, {Karl Todd}",
year = "2008",
month = "12",
day = "15",
doi = "10.1016/j.gca.2008.09.018",
language = "English (US)",
volume = "72",
pages = "5949--5961",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",
number = "24",

}

Probing the molecular-level control of aluminosilicate dissolution : A sensitive solid-state NMR proxy for reactive surface area. / Washton, Nancy M.; Brantley, Susan Louise; Mueller, Karl Todd.

In: Geochimica et Cosmochimica Acta, Vol. 72, No. 24, 15.12.2008, p. 5949-5961.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Probing the molecular-level control of aluminosilicate dissolution

T2 - A sensitive solid-state NMR proxy for reactive surface area

AU - Washton, Nancy M.

AU - Brantley, Susan Louise

AU - Mueller, Karl Todd

PY - 2008/12/15

Y1 - 2008/12/15

N2 - For two suites of volcanic aluminosilicate glasses, the accessible and reactive sites for covalent attachment of the fluorine-containing (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS) probe molecule were measured by quantitative 19F nuclear magnetic resonance (NMR) spectroscopy. The first set of samples consists of six rhyolitic and dacitic glasses originating from volcanic activity in Iceland and one rhyolitic glass from the Bishop Tuff, CA. Due to differences in the reactive species present on the surfaces of these glasses, variations in the rate of acid-mediated dissolution (pH 4) for samples in this suite cannot be explained by variations in geometric or BET-measured surface area. In contrast, the rates scale directly with the surface density of TFS-reactive sites as measured by solid-state NMR. These data are consistent with the inference that the TFS-reactive M-OH species on the glass surface, which are known to be non-hydrogen-bonded Q3 groups, represent loci accessible to and affected by proton-mediated dissolution. The second suite of samples, originating from a chronosequence in Kozushima, Japan, is comprised of four rhyolites that have been weathered for 1.1, 1.8, 26, and 52 ka. The number of TFS-reactive sites per gram increases with duration of weathering in the laboratory for the "Icelandic" samples and with duration of field weathering for both "Icelandic" and Japanese samples. One hypothesis is consistent with these and published modeling, laboratory, and field observations: over short timescales, dissolution is controlled by fast-dissolving sites, but over long timescales, dissolution is controlled by slower-dissolving sites, the surface density of which is proportional to the number of TFS-reactive Q3 sites. These latter sites are not part of a hydrogen-bonded network on the surface of the glasses, and measurement of their surface site density allows predictions of trends in reactive surface area. The TFS treatment method, which is easily monitored by quantitative 19F solid-state NMR, therefore provides a chemically specific and quantifiable proxy to understand the nature of how sites on dissolving silicates control dissolution. Furthermore, 27Al NMR techniques are shown here to be useful in identifying clays on the glass surfaces, and these methods are therefore effective for quantifying concentrations of weathering impurities. Our interpretations offer a testable hypothesis for the mechanism of proton-promoted dissolution for low-iron aluminosilicate minerals and glasses and suggest that future investigations of reactive surfaces with high-sensitivity NMR techniques are warranted.

AB - For two suites of volcanic aluminosilicate glasses, the accessible and reactive sites for covalent attachment of the fluorine-containing (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS) probe molecule were measured by quantitative 19F nuclear magnetic resonance (NMR) spectroscopy. The first set of samples consists of six rhyolitic and dacitic glasses originating from volcanic activity in Iceland and one rhyolitic glass from the Bishop Tuff, CA. Due to differences in the reactive species present on the surfaces of these glasses, variations in the rate of acid-mediated dissolution (pH 4) for samples in this suite cannot be explained by variations in geometric or BET-measured surface area. In contrast, the rates scale directly with the surface density of TFS-reactive sites as measured by solid-state NMR. These data are consistent with the inference that the TFS-reactive M-OH species on the glass surface, which are known to be non-hydrogen-bonded Q3 groups, represent loci accessible to and affected by proton-mediated dissolution. The second suite of samples, originating from a chronosequence in Kozushima, Japan, is comprised of four rhyolites that have been weathered for 1.1, 1.8, 26, and 52 ka. The number of TFS-reactive sites per gram increases with duration of weathering in the laboratory for the "Icelandic" samples and with duration of field weathering for both "Icelandic" and Japanese samples. One hypothesis is consistent with these and published modeling, laboratory, and field observations: over short timescales, dissolution is controlled by fast-dissolving sites, but over long timescales, dissolution is controlled by slower-dissolving sites, the surface density of which is proportional to the number of TFS-reactive Q3 sites. These latter sites are not part of a hydrogen-bonded network on the surface of the glasses, and measurement of their surface site density allows predictions of trends in reactive surface area. The TFS treatment method, which is easily monitored by quantitative 19F solid-state NMR, therefore provides a chemically specific and quantifiable proxy to understand the nature of how sites on dissolving silicates control dissolution. Furthermore, 27Al NMR techniques are shown here to be useful in identifying clays on the glass surfaces, and these methods are therefore effective for quantifying concentrations of weathering impurities. Our interpretations offer a testable hypothesis for the mechanism of proton-promoted dissolution for low-iron aluminosilicate minerals and glasses and suggest that future investigations of reactive surfaces with high-sensitivity NMR techniques are warranted.

UR - http://www.scopus.com/inward/record.url?scp=56549090922&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=56549090922&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2008.09.018

DO - 10.1016/j.gca.2008.09.018

M3 - Article

VL - 72

SP - 5949

EP - 5961

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

IS - 24

ER -