Process mapping and in-process monitoring of porosity in laser powder bed fusion using layerwise optical imaging

Farhad Imani, Aniruddha Gaikwad, Mohammad Montazeri, Prahalada Rao, Hui Yang, Edward Reutzel

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The goal of this work is to understand the effect of process conditions on lack of fusion porosity in parts made using laser powder bed fusion (LPBF) additive manufacturing (AM) process, and subsequently, to detect the onset of process conditions that lead to lack of fusion-related porosity from in-process sensor data. In pursuit of this goal, the objectives of this work are twofold: (1) quantify the count (number), size and location of pores as a function of three LPBF process parameters, namely, the hatch spacing (H), laser velocity (V), and laser power (P); and (2) monitor and identify process conditions that are liable to cause porosity through analysis of in-process layer-by-layer optical images of the build invoking multifractal and spectral graph theoretic features. These objectives are important because porosity has a significant impact on the functional integrity of LPBF parts, such as fatigue life. Furthermore, linking process conditions to defects via sensor signatures is the first step toward in-process quality assurance in LPBF. To achieve the first objective, titanium alloy (Ti-6Al-4V) test cylinders of 10 mm diameter × 25 mm height were built under differing H, V, and P settings on a commercial LPBF machine (EOS M280). The effect of these process parameters on count, size, and location of pores was quantified based on X-ray computed tomography (XCT) images. To achieve the second objective, layerwise optical images of the powder bed were acquired as the parts were being built. Spectral graph theoretic and multifractal features were extracted from the layer-by-layer images for each test part. Subsequently, these features were linked to the process parameters using machine learning approaches. Through these image-based features, process conditions under which the parts were built were identified with the statistical fidelity over 80% (F-score).

Original languageEnglish (US)
Article number101009
JournalJournal of Manufacturing Science and Engineering, Transactions of the ASME
Volume140
Issue number10
DOIs
StatePublished - Oct 1 2018

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Mechanical Engineering
  • Computer Science Applications
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Process mapping and in-process monitoring of porosity in laser powder bed fusion using layerwise optical imaging'. Together they form a unique fingerprint.

Cite this