Process planning for five-axis support free additive manufacturing

Xinyi Xiao, Sanjay Joshi

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Traditionally Additive Manufacturing (AM) is a two-dimensional layer-by-layer material deposition process which requires building the support structures along with the build of the desired model. Removal of the support structures is costly and time-consuming, especially for metal parts. Using a five-axis deposition machine has the potential to build structures without the need for supports. However, there is a lack of automated process planning software to support the full use of five-axis machines. This paper introduces an automated method that allows reorienting the part during the build using a five-axis machine. The reorientations still allow the part to be built using traditional planar deposition but without the use of supports. This requires that the part be decomposed into sub volumes, such that each sub volume has its build direction and can be built with planar layers without support structures. This paper presents algorithms to determine the sub-volumes, their orientations, and sequence, which form the major components of the process plan for manufacturing. The process plan is generated by sequencing the decomposed volumes while ensuring a lack of local collision with previously deposited volumes. An added benefit of this automated process is the ability to evaluate the feasibility of building the part in a support free manner. This can provide feedback to the designer on the support free manufacturability of the part. Examples illustrating the methodology and establishing the viability of the decomposition strategy are presented to verify the effectiveness of the algorithms.

Original languageEnglish (US)
Article number101569
JournalAdditive Manufacturing
Volume36
DOIs
StatePublished - Dec 2020

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Materials Science(all)
  • Engineering (miscellaneous)
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Process planning for five-axis support free additive manufacturing'. Together they form a unique fingerprint.

Cite this