TY - JOUR
T1 - Progression and Characterization of the Accelerated Atherosclerosis in Iliac Artery of New Zealand White Rabbits
T2 - Effect of Simvastatin
AU - Kanshana, Jitendra S.
AU - Khanna, Vivek
AU - Singh, Vishal
AU - Jain, Manish
AU - Misra, Ankita
AU - Kumar, Sachin
AU - Farooqui, Mariya
AU - Barthwal, Manoj K.
AU - Dikshit, Madhu
N1 - Funding Information:
Supported by the grant from Council of Scientific and Industrial Research Central Drug Research Institute Network project: Towards holistic understanding of complex diseases: Unraveling the threads of complex disease (THUNDER, BSC0102, and MOES project)
Publisher Copyright:
© Copyright 2017 Wolters Kluwer Health, Inc. All rights reserved.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Objective: Although atherosclerosis is described in New Zealand White rabbit's iliac artery, yet details of time-dependent atherosclerosis progression are not well known. Further, a well characterized accelerated model of atherosclerosis is also required for the screening of candidate drugs to target specific steps of atherosclerosis development. The present study extensively characterizes the time-dependent plaque composition and functional responses of the atherosclerosis in rabbit iliac artery and its modification by simvastatin. Methods: Atherosclerosis was induced with a combination of balloon injury and atherogenic diet (AD) (1% cholesterol, 6% peanut oil) in rabbit's iliac artery. Atherosclerosis progression was evaluated on days 8, 10, 15, 21, 35, and 56 after AD feeding. The plaque characterization was done using histology, real-time reverse transcription-polymerase chain reaction, and vasoreactivity experiments. The standard anti-hyperlipidemic drug, simvastatin (5 mg·kg -1 ·d -1), was used to investigate its effect on atherosclerotic changes. Results: Plasma lipids were elevated in a progressive manner after AD feeding from days 8 to 56. Similarly, arterial lipids, Monocyte Chemoattractant Protein-1 (MCP-1) level along with infiltration of macrophages in the lesion area were also increased from day 15 onward. This resulted in a significant increase in the plaque area and intimal-medial thickness ratio in contrast to normal animals. Inflammatory milieu was observed with a significant increase in expression of pro-inflammatory regulators like MCP-1, Tumor Necrosis Factor-α (TNF-α) and Vascular Cell Adhesion Molecule-1 (VCAM-1), whereas anti-inflammatory cytokine interleukin 10 decreased as disease progressed. Endothelial dysfunction was also observed, specifically Acetylcholine (ACh)-induced vasorelaxation was reduced from day 8 onward, whereas the phenylephrine-induced vasoconstriction response was progressively reduced from day 15 in the iliac artery. Ground substances including proteoglycans, α-actin, and collagen content along with metalloproteinase-9 and Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibitors were significantly augmented at later time points, day 21 onward. Simvastatin treatment for 35 days, at a dose having no significant effect on plasma lipid levels, significantly reduced atherosclerotic progression as evident by reduced macrophage content, inflammatory burden, and extracellular matrix component like proteoglycans and metalloproteinase-9. Conclusions: The authors observed that AD feeding with balloon injury in the rabbit iliac artery accelerated the progression of atherosclerosis and exhibited predominant features of type III human lesion within 8 weeks (56 days). Simvastatin treatment for 35 days exhibited anti-atherosclerotic efficacy without significantly lowering the circulating lipids. The current study thus provides an insight into the time-dependent atherosclerotic progression in rabbit iliac artery and highlights its utility for anti-atherosclerotic evaluation of the candidate drugs.
AB - Objective: Although atherosclerosis is described in New Zealand White rabbit's iliac artery, yet details of time-dependent atherosclerosis progression are not well known. Further, a well characterized accelerated model of atherosclerosis is also required for the screening of candidate drugs to target specific steps of atherosclerosis development. The present study extensively characterizes the time-dependent plaque composition and functional responses of the atherosclerosis in rabbit iliac artery and its modification by simvastatin. Methods: Atherosclerosis was induced with a combination of balloon injury and atherogenic diet (AD) (1% cholesterol, 6% peanut oil) in rabbit's iliac artery. Atherosclerosis progression was evaluated on days 8, 10, 15, 21, 35, and 56 after AD feeding. The plaque characterization was done using histology, real-time reverse transcription-polymerase chain reaction, and vasoreactivity experiments. The standard anti-hyperlipidemic drug, simvastatin (5 mg·kg -1 ·d -1), was used to investigate its effect on atherosclerotic changes. Results: Plasma lipids were elevated in a progressive manner after AD feeding from days 8 to 56. Similarly, arterial lipids, Monocyte Chemoattractant Protein-1 (MCP-1) level along with infiltration of macrophages in the lesion area were also increased from day 15 onward. This resulted in a significant increase in the plaque area and intimal-medial thickness ratio in contrast to normal animals. Inflammatory milieu was observed with a significant increase in expression of pro-inflammatory regulators like MCP-1, Tumor Necrosis Factor-α (TNF-α) and Vascular Cell Adhesion Molecule-1 (VCAM-1), whereas anti-inflammatory cytokine interleukin 10 decreased as disease progressed. Endothelial dysfunction was also observed, specifically Acetylcholine (ACh)-induced vasorelaxation was reduced from day 8 onward, whereas the phenylephrine-induced vasoconstriction response was progressively reduced from day 15 in the iliac artery. Ground substances including proteoglycans, α-actin, and collagen content along with metalloproteinase-9 and Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibitors were significantly augmented at later time points, day 21 onward. Simvastatin treatment for 35 days, at a dose having no significant effect on plasma lipid levels, significantly reduced atherosclerotic progression as evident by reduced macrophage content, inflammatory burden, and extracellular matrix component like proteoglycans and metalloproteinase-9. Conclusions: The authors observed that AD feeding with balloon injury in the rabbit iliac artery accelerated the progression of atherosclerosis and exhibited predominant features of type III human lesion within 8 weeks (56 days). Simvastatin treatment for 35 days exhibited anti-atherosclerotic efficacy without significantly lowering the circulating lipids. The current study thus provides an insight into the time-dependent atherosclerotic progression in rabbit iliac artery and highlights its utility for anti-atherosclerotic evaluation of the candidate drugs.
UR - http://www.scopus.com/inward/record.url?scp=85013054825&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013054825&partnerID=8YFLogxK
U2 - 10.1097/FJC.0000000000000477
DO - 10.1097/FJC.0000000000000477
M3 - Article
C2 - 28207427
AN - SCOPUS:85013054825
VL - 69
SP - 314
EP - 325
JO - Journal of Cardiovascular Pharmacology
JF - Journal of Cardiovascular Pharmacology
SN - 0160-2446
IS - 5
ER -