Progression and Characterization of the Accelerated Atherosclerosis in Iliac Artery of New Zealand White Rabbits: Effect of Simvastatin

Jitendra S. Kanshana, Vivek Khanna, Vishal Singh, Manish Jain, Ankita Misra, Sachin Kumar, Mariya Farooqui, Manoj K. Barthwal, Madhu Dikshit

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Objective: Although atherosclerosis is described in New Zealand White rabbit's iliac artery, yet details of time-dependent atherosclerosis progression are not well known. Further, a well characterized accelerated model of atherosclerosis is also required for the screening of candidate drugs to target specific steps of atherosclerosis development. The present study extensively characterizes the time-dependent plaque composition and functional responses of the atherosclerosis in rabbit iliac artery and its modification by simvastatin. Methods: Atherosclerosis was induced with a combination of balloon injury and atherogenic diet (AD) (1% cholesterol, 6% peanut oil) in rabbit's iliac artery. Atherosclerosis progression was evaluated on days 8, 10, 15, 21, 35, and 56 after AD feeding. The plaque characterization was done using histology, real-time reverse transcription-polymerase chain reaction, and vasoreactivity experiments. The standard anti-hyperlipidemic drug, simvastatin (5 mg·kg -1 ·d -1), was used to investigate its effect on atherosclerotic changes. Results: Plasma lipids were elevated in a progressive manner after AD feeding from days 8 to 56. Similarly, arterial lipids, Monocyte Chemoattractant Protein-1 (MCP-1) level along with infiltration of macrophages in the lesion area were also increased from day 15 onward. This resulted in a significant increase in the plaque area and intimal-medial thickness ratio in contrast to normal animals. Inflammatory milieu was observed with a significant increase in expression of pro-inflammatory regulators like MCP-1, Tumor Necrosis Factor-α (TNF-α) and Vascular Cell Adhesion Molecule-1 (VCAM-1), whereas anti-inflammatory cytokine interleukin 10 decreased as disease progressed. Endothelial dysfunction was also observed, specifically Acetylcholine (ACh)-induced vasorelaxation was reduced from day 8 onward, whereas the phenylephrine-induced vasoconstriction response was progressively reduced from day 15 in the iliac artery. Ground substances including proteoglycans, α-actin, and collagen content along with metalloproteinase-9 and Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibitors were significantly augmented at later time points, day 21 onward. Simvastatin treatment for 35 days, at a dose having no significant effect on plasma lipid levels, significantly reduced atherosclerotic progression as evident by reduced macrophage content, inflammatory burden, and extracellular matrix component like proteoglycans and metalloproteinase-9. Conclusions: The authors observed that AD feeding with balloon injury in the rabbit iliac artery accelerated the progression of atherosclerosis and exhibited predominant features of type III human lesion within 8 weeks (56 days). Simvastatin treatment for 35 days exhibited anti-atherosclerotic efficacy without significantly lowering the circulating lipids. The current study thus provides an insight into the time-dependent atherosclerotic progression in rabbit iliac artery and highlights its utility for anti-atherosclerotic evaluation of the candidate drugs.

Original languageEnglish (US)
Pages (from-to)314-325
Number of pages12
JournalJournal of Cardiovascular Pharmacology
Volume69
Issue number5
DOIs
StatePublished - May 1 2017

All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Progression and Characterization of the Accelerated Atherosclerosis in Iliac Artery of New Zealand White Rabbits: Effect of Simvastatin'. Together they form a unique fingerprint.

Cite this