ProgRPGAN: Progressive GAN for Route Planning

Tao Yang Fu, Wang Chien Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Learning to route has received significant research momentum as anew approach for the route planning problem in intelligent transportation systems. By exploring global knowledge of geographical areas and topological structures of road networks to facilitate route planning, in this work, we propose a novel Generative Adversarial Network (GAN) framework, namely Progressive Route Planning GAN (ProgRPGAN), for route planning in road networks. The novelty of ProgRPGAN lies in the following aspects: 1) we propose to plan a route with levels of increasing map resolution, starting on a low-resolution grid map, gradually refining it on higher-resolution grid maps, and eventually on the road network in order to progressively generate various realistic paths; 2) we propose to transfer parameters of the previous-level generator and discriminator to the subsequent generator and discriminator for parameter initialization in order to improve the efficiency and stability in model learning; and 3) we propose to pre-train embeddings of grid cells in grid maps and intersections in the road network by capturing the network topology and external factors to facilitate effective model learn-ing. Empirical result shows that ProgRPGAN soundly outperforms the state-of-the-art learning to route methods, especially for long routes, by 9.46% to 13.02% in F1-measure on multiple large-scale real-world datasets. ProgRPGAN, moreover, effectively generates various realistic routes for the same query.

Original languageEnglish (US)
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages393-403
Number of pages11
ISBN (Electronic)9781450383325
DOIs
StatePublished - Aug 14 2021
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: Aug 14 2021Aug 18 2021

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period8/14/218/18/21

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'ProgRPGAN: Progressive GAN for Route Planning'. Together they form a unique fingerprint.

Cite this