Proppant transport in a propagating hydraulic fracture and the evolution of transport properties

J. Wang, D. Elsworth, M. K. Denison

Research output: Contribution to conferencePaper

Abstract

A numerical model is developed to describe proppant transport within a propagating blade-shaped fracture towards defining the fracture conductivity and reservoir production following fracture arrest, deflation then production. Fracture propagation is formulated based on the PKN-formalism coupled with advective transport of an equivalent slurry representing a proppant-laden fluid. Empirical constitutive relations are incorporated to define rheology of the slurry, proppant transport with bulk slurry flow, proppant gravitational settling and finally the transition from Poiseuille (fracture) flow to Darcy (proppant pack) flow. At the maximum extent of the fluid-driven fracture, as driving pressure is released, a fracture closure model is employed to follow the evolution of fracture conductivity with the decreasing fluid pressure. This model is capable of accommodating the mechanical response of the proppant pack, fracture closure of potentially contacting rough surfaces, proppant embedment into fracture walls, and most importantly flexural displacement of the unsupported spans of the fracture. Results show that reduced fluid viscosity increases the length of the resulting fracture, while rapid leak-off decreases it. Proppant density and size do not significantly influence fracture propagation. Proppant settling ensues throughout fracture advance, and is accelerated by a lower viscosity fluid or greater proppant density or size, resulting in accumulation of a proppant bed at the fracture base. “Screen-out” of proppant at the fracture tip can occur where fracture aperture is only several times the diameter of the individual proppant particles. After fracture closure, proppant packs comprising larger particles exhibit higher conductivity. More importantly, high-conductivity flow channels are necessarily formed around proppant banks due to the flexural displacement of the fracture walls, which offer preferential flow pathways and significantly influence the distribution of fluid transport.

Original languageEnglish (US)
StatePublished - Jan 1 2019
Event53rd U.S. Rock Mechanics/Geomechanics Symposium - Brooklyn, United States
Duration: Jun 23 2019Jun 26 2019

Conference

Conference53rd U.S. Rock Mechanics/Geomechanics Symposium
CountryUnited States
CityBrooklyn
Period6/23/196/26/19

Fingerprint

Proppants
hydraulics
Transport properties
transport properties
Hydraulics
conductivity
fluid
Fluids
slurry
fracture propagation
fluids
hydraulic fracturing
closures
settling
viscosity
Crack propagation
fracture flow
fracture aperture
deflation
preferential flow

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology
  • Geophysics

Cite this

Wang, J., Elsworth, D., & Denison, M. K. (2019). Proppant transport in a propagating hydraulic fracture and the evolution of transport properties. Paper presented at 53rd U.S. Rock Mechanics/Geomechanics Symposium, Brooklyn, United States.
Wang, J. ; Elsworth, D. ; Denison, M. K. / Proppant transport in a propagating hydraulic fracture and the evolution of transport properties. Paper presented at 53rd U.S. Rock Mechanics/Geomechanics Symposium, Brooklyn, United States.
@conference{15eebdc9186540a39602cc0d6aace9b7,
title = "Proppant transport in a propagating hydraulic fracture and the evolution of transport properties",
abstract = "A numerical model is developed to describe proppant transport within a propagating blade-shaped fracture towards defining the fracture conductivity and reservoir production following fracture arrest, deflation then production. Fracture propagation is formulated based on the PKN-formalism coupled with advective transport of an equivalent slurry representing a proppant-laden fluid. Empirical constitutive relations are incorporated to define rheology of the slurry, proppant transport with bulk slurry flow, proppant gravitational settling and finally the transition from Poiseuille (fracture) flow to Darcy (proppant pack) flow. At the maximum extent of the fluid-driven fracture, as driving pressure is released, a fracture closure model is employed to follow the evolution of fracture conductivity with the decreasing fluid pressure. This model is capable of accommodating the mechanical response of the proppant pack, fracture closure of potentially contacting rough surfaces, proppant embedment into fracture walls, and most importantly flexural displacement of the unsupported spans of the fracture. Results show that reduced fluid viscosity increases the length of the resulting fracture, while rapid leak-off decreases it. Proppant density and size do not significantly influence fracture propagation. Proppant settling ensues throughout fracture advance, and is accelerated by a lower viscosity fluid or greater proppant density or size, resulting in accumulation of a proppant bed at the fracture base. “Screen-out” of proppant at the fracture tip can occur where fracture aperture is only several times the diameter of the individual proppant particles. After fracture closure, proppant packs comprising larger particles exhibit higher conductivity. More importantly, high-conductivity flow channels are necessarily formed around proppant banks due to the flexural displacement of the fracture walls, which offer preferential flow pathways and significantly influence the distribution of fluid transport.",
author = "J. Wang and D. Elsworth and Denison, {M. K.}",
year = "2019",
month = "1",
day = "1",
language = "English (US)",
note = "53rd U.S. Rock Mechanics/Geomechanics Symposium ; Conference date: 23-06-2019 Through 26-06-2019",

}

Wang, J, Elsworth, D & Denison, MK 2019, 'Proppant transport in a propagating hydraulic fracture and the evolution of transport properties', Paper presented at 53rd U.S. Rock Mechanics/Geomechanics Symposium, Brooklyn, United States, 6/23/19 - 6/26/19.

Proppant transport in a propagating hydraulic fracture and the evolution of transport properties. / Wang, J.; Elsworth, D.; Denison, M. K.

2019. Paper presented at 53rd U.S. Rock Mechanics/Geomechanics Symposium, Brooklyn, United States.

Research output: Contribution to conferencePaper

TY - CONF

T1 - Proppant transport in a propagating hydraulic fracture and the evolution of transport properties

AU - Wang, J.

AU - Elsworth, D.

AU - Denison, M. K.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - A numerical model is developed to describe proppant transport within a propagating blade-shaped fracture towards defining the fracture conductivity and reservoir production following fracture arrest, deflation then production. Fracture propagation is formulated based on the PKN-formalism coupled with advective transport of an equivalent slurry representing a proppant-laden fluid. Empirical constitutive relations are incorporated to define rheology of the slurry, proppant transport with bulk slurry flow, proppant gravitational settling and finally the transition from Poiseuille (fracture) flow to Darcy (proppant pack) flow. At the maximum extent of the fluid-driven fracture, as driving pressure is released, a fracture closure model is employed to follow the evolution of fracture conductivity with the decreasing fluid pressure. This model is capable of accommodating the mechanical response of the proppant pack, fracture closure of potentially contacting rough surfaces, proppant embedment into fracture walls, and most importantly flexural displacement of the unsupported spans of the fracture. Results show that reduced fluid viscosity increases the length of the resulting fracture, while rapid leak-off decreases it. Proppant density and size do not significantly influence fracture propagation. Proppant settling ensues throughout fracture advance, and is accelerated by a lower viscosity fluid or greater proppant density or size, resulting in accumulation of a proppant bed at the fracture base. “Screen-out” of proppant at the fracture tip can occur where fracture aperture is only several times the diameter of the individual proppant particles. After fracture closure, proppant packs comprising larger particles exhibit higher conductivity. More importantly, high-conductivity flow channels are necessarily formed around proppant banks due to the flexural displacement of the fracture walls, which offer preferential flow pathways and significantly influence the distribution of fluid transport.

AB - A numerical model is developed to describe proppant transport within a propagating blade-shaped fracture towards defining the fracture conductivity and reservoir production following fracture arrest, deflation then production. Fracture propagation is formulated based on the PKN-formalism coupled with advective transport of an equivalent slurry representing a proppant-laden fluid. Empirical constitutive relations are incorporated to define rheology of the slurry, proppant transport with bulk slurry flow, proppant gravitational settling and finally the transition from Poiseuille (fracture) flow to Darcy (proppant pack) flow. At the maximum extent of the fluid-driven fracture, as driving pressure is released, a fracture closure model is employed to follow the evolution of fracture conductivity with the decreasing fluid pressure. This model is capable of accommodating the mechanical response of the proppant pack, fracture closure of potentially contacting rough surfaces, proppant embedment into fracture walls, and most importantly flexural displacement of the unsupported spans of the fracture. Results show that reduced fluid viscosity increases the length of the resulting fracture, while rapid leak-off decreases it. Proppant density and size do not significantly influence fracture propagation. Proppant settling ensues throughout fracture advance, and is accelerated by a lower viscosity fluid or greater proppant density or size, resulting in accumulation of a proppant bed at the fracture base. “Screen-out” of proppant at the fracture tip can occur where fracture aperture is only several times the diameter of the individual proppant particles. After fracture closure, proppant packs comprising larger particles exhibit higher conductivity. More importantly, high-conductivity flow channels are necessarily formed around proppant banks due to the flexural displacement of the fracture walls, which offer preferential flow pathways and significantly influence the distribution of fluid transport.

UR - http://www.scopus.com/inward/record.url?scp=85074088224&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85074088224&partnerID=8YFLogxK

M3 - Paper

AN - SCOPUS:85074088224

ER -

Wang J, Elsworth D, Denison MK. Proppant transport in a propagating hydraulic fracture and the evolution of transport properties. 2019. Paper presented at 53rd U.S. Rock Mechanics/Geomechanics Symposium, Brooklyn, United States.