Quantitative genetics of growth and development in Populus. I. A three-generation comparison of tree architecture during the first 2 years of growth

R. Wu, R. F. Stettler

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

One approach to gain an insight into the genetics of tree architecture is to make use of morphologically divergent parents and study their segregating progeny in the F2 and backcross (B1) generations. This approach was chosen in the present study in which material of a three-generation pedigree growing side by side in a replicated plantation, was analyzed. The pedigree included Populus trichocarpa (T) and P. deltoides (D) parents, their F1 and F2 hybrids and their B1 hybrids to the D parent. The trees were grown in the environment of the T parent and measured for the first 2 years of growth. Nine quantitative traits were studied at the stem, branch and leaf levels of tree architecture, in which the original parents differed. Strong F1 hybrid vigor relative to the better parent (T) was expressed in growth and its components. Most quantitative traits in the F2 and B1 hybrids were intermediate between the T and D parents but displayed a wide range of variation due to segregation. The results from the analysis of variance indicated that all morphometric traits were significantly different among F2 and B1 clones, but the B1 hybrids were more sensitive to replicates than the F2. Broad-sense heritabilities (H2) based on clonal means ranged from moderately high to high (0.50-0.90) for the traits studied, with H2 values varying over age. The H2 estimates reflected greater environmental "noise" in the B1 than in the F2, presumably due to the greater proportion of maladaptive D alleles in those hybrids. In both families, sylleptic branch number and length, and leaf size on the terminal, showed strong genetic correlations with stem growth. The large divergence between the two original parents in the traits studied, combined with the high chromosome number in Populus (2n=38), makes this pedigree well suited for the estimation of the number of quantitative trait loci (QTLs) underlying quantitative variation by Wright's biometric method (1968). Variation in several traits was found to be under the control of surprisingly few major QTLs: 3-4 in 2nd-year height and diameter growth, a single QTL in stem diameter/height ratio.

Original languageEnglish (US)
Pages (from-to)1046-1054
Number of pages9
JournalTheoretical and Applied Genetics
Volume89
Issue number7-8
DOIs
StatePublished - Dec 1 1994

Fingerprint

Populus
quantitative genetics
Growth and Development
growth and development
Quantitative Trait Loci
Pedigree
pedigree
Growth
quantitative trait loci
quantitative traits
branches
Hybrid Vigor
Populus balsamifera subsp. trichocarpa
stems
Populus deltoides
stem elongation
biometry
heterosis
genetic correlation
chromosome number

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Agronomy and Crop Science
  • Genetics

Cite this

@article{b1c5fd7d1b214ea7b6ab4ec8ebd2df70,
title = "Quantitative genetics of growth and development in Populus. I. A three-generation comparison of tree architecture during the first 2 years of growth",
abstract = "One approach to gain an insight into the genetics of tree architecture is to make use of morphologically divergent parents and study their segregating progeny in the F2 and backcross (B1) generations. This approach was chosen in the present study in which material of a three-generation pedigree growing side by side in a replicated plantation, was analyzed. The pedigree included Populus trichocarpa (T) and P. deltoides (D) parents, their F1 and F2 hybrids and their B1 hybrids to the D parent. The trees were grown in the environment of the T parent and measured for the first 2 years of growth. Nine quantitative traits were studied at the stem, branch and leaf levels of tree architecture, in which the original parents differed. Strong F1 hybrid vigor relative to the better parent (T) was expressed in growth and its components. Most quantitative traits in the F2 and B1 hybrids were intermediate between the T and D parents but displayed a wide range of variation due to segregation. The results from the analysis of variance indicated that all morphometric traits were significantly different among F2 and B1 clones, but the B1 hybrids were more sensitive to replicates than the F2. Broad-sense heritabilities (H2) based on clonal means ranged from moderately high to high (0.50-0.90) for the traits studied, with H2 values varying over age. The H2 estimates reflected greater environmental {"}noise{"} in the B1 than in the F2, presumably due to the greater proportion of maladaptive D alleles in those hybrids. In both families, sylleptic branch number and length, and leaf size on the terminal, showed strong genetic correlations with stem growth. The large divergence between the two original parents in the traits studied, combined with the high chromosome number in Populus (2n=38), makes this pedigree well suited for the estimation of the number of quantitative trait loci (QTLs) underlying quantitative variation by Wright's biometric method (1968). Variation in several traits was found to be under the control of surprisingly few major QTLs: 3-4 in 2nd-year height and diameter growth, a single QTL in stem diameter/height ratio.",
author = "R. Wu and Stettler, {R. F.}",
year = "1994",
month = "12",
day = "1",
doi = "10.1007/BF00224537",
language = "English (US)",
volume = "89",
pages = "1046--1054",
journal = "Theoretical And Applied Genetics",
issn = "0040-5752",
publisher = "Springer Verlag",
number = "7-8",

}

TY - JOUR

T1 - Quantitative genetics of growth and development in Populus. I. A three-generation comparison of tree architecture during the first 2 years of growth

AU - Wu, R.

AU - Stettler, R. F.

PY - 1994/12/1

Y1 - 1994/12/1

N2 - One approach to gain an insight into the genetics of tree architecture is to make use of morphologically divergent parents and study their segregating progeny in the F2 and backcross (B1) generations. This approach was chosen in the present study in which material of a three-generation pedigree growing side by side in a replicated plantation, was analyzed. The pedigree included Populus trichocarpa (T) and P. deltoides (D) parents, their F1 and F2 hybrids and their B1 hybrids to the D parent. The trees were grown in the environment of the T parent and measured for the first 2 years of growth. Nine quantitative traits were studied at the stem, branch and leaf levels of tree architecture, in which the original parents differed. Strong F1 hybrid vigor relative to the better parent (T) was expressed in growth and its components. Most quantitative traits in the F2 and B1 hybrids were intermediate between the T and D parents but displayed a wide range of variation due to segregation. The results from the analysis of variance indicated that all morphometric traits were significantly different among F2 and B1 clones, but the B1 hybrids were more sensitive to replicates than the F2. Broad-sense heritabilities (H2) based on clonal means ranged from moderately high to high (0.50-0.90) for the traits studied, with H2 values varying over age. The H2 estimates reflected greater environmental "noise" in the B1 than in the F2, presumably due to the greater proportion of maladaptive D alleles in those hybrids. In both families, sylleptic branch number and length, and leaf size on the terminal, showed strong genetic correlations with stem growth. The large divergence between the two original parents in the traits studied, combined with the high chromosome number in Populus (2n=38), makes this pedigree well suited for the estimation of the number of quantitative trait loci (QTLs) underlying quantitative variation by Wright's biometric method (1968). Variation in several traits was found to be under the control of surprisingly few major QTLs: 3-4 in 2nd-year height and diameter growth, a single QTL in stem diameter/height ratio.

AB - One approach to gain an insight into the genetics of tree architecture is to make use of morphologically divergent parents and study their segregating progeny in the F2 and backcross (B1) generations. This approach was chosen in the present study in which material of a three-generation pedigree growing side by side in a replicated plantation, was analyzed. The pedigree included Populus trichocarpa (T) and P. deltoides (D) parents, their F1 and F2 hybrids and their B1 hybrids to the D parent. The trees were grown in the environment of the T parent and measured for the first 2 years of growth. Nine quantitative traits were studied at the stem, branch and leaf levels of tree architecture, in which the original parents differed. Strong F1 hybrid vigor relative to the better parent (T) was expressed in growth and its components. Most quantitative traits in the F2 and B1 hybrids were intermediate between the T and D parents but displayed a wide range of variation due to segregation. The results from the analysis of variance indicated that all morphometric traits were significantly different among F2 and B1 clones, but the B1 hybrids were more sensitive to replicates than the F2. Broad-sense heritabilities (H2) based on clonal means ranged from moderately high to high (0.50-0.90) for the traits studied, with H2 values varying over age. The H2 estimates reflected greater environmental "noise" in the B1 than in the F2, presumably due to the greater proportion of maladaptive D alleles in those hybrids. In both families, sylleptic branch number and length, and leaf size on the terminal, showed strong genetic correlations with stem growth. The large divergence between the two original parents in the traits studied, combined with the high chromosome number in Populus (2n=38), makes this pedigree well suited for the estimation of the number of quantitative trait loci (QTLs) underlying quantitative variation by Wright's biometric method (1968). Variation in several traits was found to be under the control of surprisingly few major QTLs: 3-4 in 2nd-year height and diameter growth, a single QTL in stem diameter/height ratio.

UR - http://www.scopus.com/inward/record.url?scp=0028253919&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028253919&partnerID=8YFLogxK

U2 - 10.1007/BF00224537

DO - 10.1007/BF00224537

M3 - Article

C2 - 24178123

AN - SCOPUS:0028253919

VL - 89

SP - 1046

EP - 1054

JO - Theoretical And Applied Genetics

JF - Theoretical And Applied Genetics

SN - 0040-5752

IS - 7-8

ER -