Abstract
We study the prequantization of pre-quasi-symplectic groupoids and their Hamiltonian spaces using S1-gerbes. We give a geometric description of the integrality condition. As an application, we study the prequantization of the quasi-Hamiltonian G-spaces of Alekseev-Malkin-Meinrenken.
Original language | English (US) |
---|---|
Title of host publication | Progress in Mathematics |
Publisher | Springer Basel |
Pages | 423-454 |
Number of pages | 32 |
DOIs | |
State | Published - Jan 1 2005 |
Publication series
Name | Progress in Mathematics |
---|---|
Volume | 232 |
ISSN (Print) | 0743-1643 |
ISSN (Electronic) | 2296-505X |
Fingerprint
All Science Journal Classification (ASJC) codes
- Analysis
- Algebra and Number Theory
- Geometry and Topology
Cite this
}
Quantization of pre-quasi-symplectic groupoids and their Hamiltonian spaces. / Laurent-Gengoux, Camille; Xu, Ping.
Progress in Mathematics. Springer Basel, 2005. p. 423-454 (Progress in Mathematics; Vol. 232).Research output: Chapter in Book/Report/Conference proceeding › Chapter
TY - CHAP
T1 - Quantization of pre-quasi-symplectic groupoids and their Hamiltonian spaces
AU - Laurent-Gengoux, Camille
AU - Xu, Ping
PY - 2005/1/1
Y1 - 2005/1/1
N2 - We study the prequantization of pre-quasi-symplectic groupoids and their Hamiltonian spaces using S1-gerbes. We give a geometric description of the integrality condition. As an application, we study the prequantization of the quasi-Hamiltonian G-spaces of Alekseev-Malkin-Meinrenken.
AB - We study the prequantization of pre-quasi-symplectic groupoids and their Hamiltonian spaces using S1-gerbes. We give a geometric description of the integrality condition. As an application, we study the prequantization of the quasi-Hamiltonian G-spaces of Alekseev-Malkin-Meinrenken.
UR - http://www.scopus.com/inward/record.url?scp=84981265394&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84981265394&partnerID=8YFLogxK
U2 - 10.1007/0-8176-4419-9_14
DO - 10.1007/0-8176-4419-9_14
M3 - Chapter
AN - SCOPUS:84981265394
T3 - Progress in Mathematics
SP - 423
EP - 454
BT - Progress in Mathematics
PB - Springer Basel
ER -