Quantum anomalous Hall effect in two-dimensional magnetic insulator heterojunctions

Jinbo Pan, Jiabin Yu, Yan Fang Zhang, Shixuan Du, Anderson Janotti, Chao Xing Liu, Qimin Yan

Research output: Contribution to journalArticlepeer-review

Abstract

Recent years have witnessed tremendous success in the discovery of topological states of matter. Particularly, sophisticated theoretical methods in time-reversal-invariant topological phases have been developed, leading to the comprehensive search of crystal database and the prediction of thousands of topological materials. In contrast, the discovery of magnetic topological phases that break time reversal is still limited to several exemplary materials because the coexistence of magnetism and topological electronic band structure is rare in a single compound. To overcome this challenge, we propose an alternative approach to realize the quantum anomalous Hall (QAH) effect, a typical example of magnetic topological phase, via engineering two-dimensional (2D) magnetic van der Waals heterojunctions. Instead of a single magnetic topological material, we search for the combinations of two 2D (typically trivial) magnetic insulator compounds with specific band alignment so that they can together form a type-III broken-gap heterojunction with topologically non-trivial band structure. By combining the data-driven materials search, first-principles calculations, and the symmetry-based analytical models, we identify eight type-III broken-gap heterojunctions consisting of 2D ferromagnetic insulators in the MXY compound family as a set of candidates for the QAH effect. In particular, we directly calculate the topological invariant (Chern number) and chiral edge states in the MnNF/MnNCl heterojunction with ferromagnetic stacking. This work illustrates how data-driven material science can be combined with symmetry-based physical principles to guide the search for heterojunction-based quantum materials hosting the QAH effect and other exotic quantum states in general.

Original languageEnglish (US)
Article number152
Journalnpj Computational Materials
Volume6
Issue number1
DOIs
StatePublished - Dec 1 2020

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Materials Science(all)
  • Mechanics of Materials
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Quantum anomalous Hall effect in two-dimensional magnetic insulator heterojunctions'. Together they form a unique fingerprint.

Cite this