Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes

Research output: Contribution to journalArticle

282 Citations (Scopus)

Abstract

A general technique is demonstrated to quantify the contribution of monomolecular and bimolecular quenching processes to the external quantum efficiency (EQE) roll-off in organic light emitting devices (OLEDs). Based on the photoluminescence transients of electrically driven devices, we identify the relative contributions of quenching and lack of charge balance to the roll-off in four fluorescent and phosphorescent devices containing the dopants 2,3,7,8,12,13,17,18-octaethylporphine platinum (PtOEP), fac tris-2- phenylpyridine iridium [Ir (ppy)3], the laser dye 4-dicyanmethylene-2-methyl-6- (p -dimethylaminostyryl)- 4H -pyran (DCM), and neat tris(8-hydroxyquinoline) aluminum. We find that quenching is proportional to the radiative lifetime of the emitting molecule and that it is solely responsible for the roll-off of PtOEP. Roll-off of the EQE for Ir (ppy)3 is due primarily to loss of charge balance at low current density, J, and only shows significant quenching at J≥1 A/cm2. No quenching is observed for the fluorescent doped DCM device, even for J∼28 A/cm2. Consequently, doped fluorescent OLEDs that maintain charge balance at high current density enable the elimination of intensity roll-off, which may provide a route to electrically pumped organic lasing.

Original languageEnglish (US)
Article number235215
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume77
Issue number23
DOIs
StatePublished - Jun 23 2008

Fingerprint

Organic light emitting diodes (OLED)
Quantum efficiency
quantum efficiency
Luminance
Quenching
brightness
light emitting diodes
quenching
Current density
current density
Pyrans
Dye lasers
Iridium
radiative lifetime
low currents
iridium
Platinum
dye lasers
high current
lasing

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Cite this

@article{6b4b7494be214bc3932436357f6f61df,
title = "Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes",
abstract = "A general technique is demonstrated to quantify the contribution of monomolecular and bimolecular quenching processes to the external quantum efficiency (EQE) roll-off in organic light emitting devices (OLEDs). Based on the photoluminescence transients of electrically driven devices, we identify the relative contributions of quenching and lack of charge balance to the roll-off in four fluorescent and phosphorescent devices containing the dopants 2,3,7,8,12,13,17,18-octaethylporphine platinum (PtOEP), fac tris-2- phenylpyridine iridium [Ir (ppy)3], the laser dye 4-dicyanmethylene-2-methyl-6- (p -dimethylaminostyryl)- 4H -pyran (DCM), and neat tris(8-hydroxyquinoline) aluminum. We find that quenching is proportional to the radiative lifetime of the emitting molecule and that it is solely responsible for the roll-off of PtOEP. Roll-off of the EQE for Ir (ppy)3 is due primarily to loss of charge balance at low current density, J, and only shows significant quenching at J≥1 A/cm2. No quenching is observed for the fluorescent doped DCM device, even for J∼28 A/cm2. Consequently, doped fluorescent OLEDs that maintain charge balance at high current density enable the elimination of intensity roll-off, which may provide a route to electrically pumped organic lasing.",
author = "Giebink, {Noel Christopher} and Forrest, {S. R.}",
year = "2008",
month = "6",
day = "23",
doi = "10.1103/PhysRevB.77.235215",
language = "English (US)",
volume = "77",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "23",

}

TY - JOUR

T1 - Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes

AU - Giebink, Noel Christopher

AU - Forrest, S. R.

PY - 2008/6/23

Y1 - 2008/6/23

N2 - A general technique is demonstrated to quantify the contribution of monomolecular and bimolecular quenching processes to the external quantum efficiency (EQE) roll-off in organic light emitting devices (OLEDs). Based on the photoluminescence transients of electrically driven devices, we identify the relative contributions of quenching and lack of charge balance to the roll-off in four fluorescent and phosphorescent devices containing the dopants 2,3,7,8,12,13,17,18-octaethylporphine platinum (PtOEP), fac tris-2- phenylpyridine iridium [Ir (ppy)3], the laser dye 4-dicyanmethylene-2-methyl-6- (p -dimethylaminostyryl)- 4H -pyran (DCM), and neat tris(8-hydroxyquinoline) aluminum. We find that quenching is proportional to the radiative lifetime of the emitting molecule and that it is solely responsible for the roll-off of PtOEP. Roll-off of the EQE for Ir (ppy)3 is due primarily to loss of charge balance at low current density, J, and only shows significant quenching at J≥1 A/cm2. No quenching is observed for the fluorescent doped DCM device, even for J∼28 A/cm2. Consequently, doped fluorescent OLEDs that maintain charge balance at high current density enable the elimination of intensity roll-off, which may provide a route to electrically pumped organic lasing.

AB - A general technique is demonstrated to quantify the contribution of monomolecular and bimolecular quenching processes to the external quantum efficiency (EQE) roll-off in organic light emitting devices (OLEDs). Based on the photoluminescence transients of electrically driven devices, we identify the relative contributions of quenching and lack of charge balance to the roll-off in four fluorescent and phosphorescent devices containing the dopants 2,3,7,8,12,13,17,18-octaethylporphine platinum (PtOEP), fac tris-2- phenylpyridine iridium [Ir (ppy)3], the laser dye 4-dicyanmethylene-2-methyl-6- (p -dimethylaminostyryl)- 4H -pyran (DCM), and neat tris(8-hydroxyquinoline) aluminum. We find that quenching is proportional to the radiative lifetime of the emitting molecule and that it is solely responsible for the roll-off of PtOEP. Roll-off of the EQE for Ir (ppy)3 is due primarily to loss of charge balance at low current density, J, and only shows significant quenching at J≥1 A/cm2. No quenching is observed for the fluorescent doped DCM device, even for J∼28 A/cm2. Consequently, doped fluorescent OLEDs that maintain charge balance at high current density enable the elimination of intensity roll-off, which may provide a route to electrically pumped organic lasing.

UR - http://www.scopus.com/inward/record.url?scp=45749105916&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=45749105916&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.77.235215

DO - 10.1103/PhysRevB.77.235215

M3 - Article

AN - SCOPUS:45749105916

VL - 77

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 23

M1 - 235215

ER -