Quenching factor for low-energy nuclear recoils in a plastic scintillator

L. Reichhart, D. Yu Akimov, H. M. Araújo, E. J. Barnes, V. A. Belov, A. A. Burenkov, V. Chepel, A. Currie, L. Deviveiros, B. Edwards, V. Francis, C. Ghag, A. Hollingsworth, M. Horn, G. E. Kalmus, A. S. Kobyakin, A. G. Kovalenko, V. N. Lebedenko, A. Lindote, M. I. LopesR. Lüscher, P. Majewski, A. St J. Murphy, F. Neves, S. M. Paling, J. Pinto Da Cunha, R. Preece, J. J. Quenby, P. R. Scovell, C. Silva, V. N. Solovov, N. J.T. Smith, P. F. Smith, V. N. Stekhanov, T. J. Sumner, C. Thorne, R. J. Walker

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Plastic scintillators are widely used in industry, medicine, and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterize the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semiempirical formulation of Birks and a kB factor of (0.014±0.002) g MeV-1 cm-2 has been determined. Below that energy, the measured quenching factor falls more steeply than predicted by the Birks formalism.

Original languageEnglish (US)
Article number065801
JournalPhysical Review C - Nuclear Physics
Volume85
Issue number6
DOIs
StatePublished - Jun 4 2012

Fingerprint

nuclear energy
scintillation counters
plastics
quenching
scintillation
energy
nuclear particles
neutrons
nuclear physics
medicine
polystyrene
neutron scattering
industries
formalism
formulations
physics
simulation

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Cite this

Reichhart, L., Akimov, D. Y., Araújo, H. M., Barnes, E. J., Belov, V. A., Burenkov, A. A., ... Walker, R. J. (2012). Quenching factor for low-energy nuclear recoils in a plastic scintillator. Physical Review C - Nuclear Physics, 85(6), [065801]. https://doi.org/10.1103/PhysRevC.85.065801
Reichhart, L. ; Akimov, D. Yu ; Araújo, H. M. ; Barnes, E. J. ; Belov, V. A. ; Burenkov, A. A. ; Chepel, V. ; Currie, A. ; Deviveiros, L. ; Edwards, B. ; Francis, V. ; Ghag, C. ; Hollingsworth, A. ; Horn, M. ; Kalmus, G. E. ; Kobyakin, A. S. ; Kovalenko, A. G. ; Lebedenko, V. N. ; Lindote, A. ; Lopes, M. I. ; Lüscher, R. ; Majewski, P. ; Murphy, A. St J. ; Neves, F. ; Paling, S. M. ; Pinto Da Cunha, J. ; Preece, R. ; Quenby, J. J. ; Scovell, P. R. ; Silva, C. ; Solovov, V. N. ; Smith, N. J.T. ; Smith, P. F. ; Stekhanov, V. N. ; Sumner, T. J. ; Thorne, C. ; Walker, R. J. / Quenching factor for low-energy nuclear recoils in a plastic scintillator. In: Physical Review C - Nuclear Physics. 2012 ; Vol. 85, No. 6.
@article{e90c3d85671144739ba52f3b943171ef,
title = "Quenching factor for low-energy nuclear recoils in a plastic scintillator",
abstract = "Plastic scintillators are widely used in industry, medicine, and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterize the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semiempirical formulation of Birks and a kB factor of (0.014±0.002) g MeV-1 cm-2 has been determined. Below that energy, the measured quenching factor falls more steeply than predicted by the Birks formalism.",
author = "L. Reichhart and Akimov, {D. Yu} and Ara{\'u}jo, {H. M.} and Barnes, {E. J.} and Belov, {V. A.} and Burenkov, {A. A.} and V. Chepel and A. Currie and L. Deviveiros and B. Edwards and V. Francis and C. Ghag and A. Hollingsworth and M. Horn and Kalmus, {G. E.} and Kobyakin, {A. S.} and Kovalenko, {A. G.} and Lebedenko, {V. N.} and A. Lindote and Lopes, {M. I.} and R. L{\"u}scher and P. Majewski and Murphy, {A. St J.} and F. Neves and Paling, {S. M.} and {Pinto Da Cunha}, J. and R. Preece and Quenby, {J. J.} and Scovell, {P. R.} and C. Silva and Solovov, {V. N.} and Smith, {N. J.T.} and Smith, {P. F.} and Stekhanov, {V. N.} and Sumner, {T. J.} and C. Thorne and Walker, {R. J.}",
year = "2012",
month = "6",
day = "4",
doi = "10.1103/PhysRevC.85.065801",
language = "English (US)",
volume = "85",
journal = "Physical Review C - Nuclear Physics",
issn = "0556-2813",
publisher = "American Physical Society",
number = "6",

}

Reichhart, L, Akimov, DY, Araújo, HM, Barnes, EJ, Belov, VA, Burenkov, AA, Chepel, V, Currie, A, Deviveiros, L, Edwards, B, Francis, V, Ghag, C, Hollingsworth, A, Horn, M, Kalmus, GE, Kobyakin, AS, Kovalenko, AG, Lebedenko, VN, Lindote, A, Lopes, MI, Lüscher, R, Majewski, P, Murphy, ASJ, Neves, F, Paling, SM, Pinto Da Cunha, J, Preece, R, Quenby, JJ, Scovell, PR, Silva, C, Solovov, VN, Smith, NJT, Smith, PF, Stekhanov, VN, Sumner, TJ, Thorne, C & Walker, RJ 2012, 'Quenching factor for low-energy nuclear recoils in a plastic scintillator', Physical Review C - Nuclear Physics, vol. 85, no. 6, 065801. https://doi.org/10.1103/PhysRevC.85.065801

Quenching factor for low-energy nuclear recoils in a plastic scintillator. / Reichhart, L.; Akimov, D. Yu; Araújo, H. M.; Barnes, E. J.; Belov, V. A.; Burenkov, A. A.; Chepel, V.; Currie, A.; Deviveiros, L.; Edwards, B.; Francis, V.; Ghag, C.; Hollingsworth, A.; Horn, M.; Kalmus, G. E.; Kobyakin, A. S.; Kovalenko, A. G.; Lebedenko, V. N.; Lindote, A.; Lopes, M. I.; Lüscher, R.; Majewski, P.; Murphy, A. St J.; Neves, F.; Paling, S. M.; Pinto Da Cunha, J.; Preece, R.; Quenby, J. J.; Scovell, P. R.; Silva, C.; Solovov, V. N.; Smith, N. J.T.; Smith, P. F.; Stekhanov, V. N.; Sumner, T. J.; Thorne, C.; Walker, R. J.

In: Physical Review C - Nuclear Physics, Vol. 85, No. 6, 065801, 04.06.2012.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Quenching factor for low-energy nuclear recoils in a plastic scintillator

AU - Reichhart, L.

AU - Akimov, D. Yu

AU - Araújo, H. M.

AU - Barnes, E. J.

AU - Belov, V. A.

AU - Burenkov, A. A.

AU - Chepel, V.

AU - Currie, A.

AU - Deviveiros, L.

AU - Edwards, B.

AU - Francis, V.

AU - Ghag, C.

AU - Hollingsworth, A.

AU - Horn, M.

AU - Kalmus, G. E.

AU - Kobyakin, A. S.

AU - Kovalenko, A. G.

AU - Lebedenko, V. N.

AU - Lindote, A.

AU - Lopes, M. I.

AU - Lüscher, R.

AU - Majewski, P.

AU - Murphy, A. St J.

AU - Neves, F.

AU - Paling, S. M.

AU - Pinto Da Cunha, J.

AU - Preece, R.

AU - Quenby, J. J.

AU - Scovell, P. R.

AU - Silva, C.

AU - Solovov, V. N.

AU - Smith, N. J.T.

AU - Smith, P. F.

AU - Stekhanov, V. N.

AU - Sumner, T. J.

AU - Thorne, C.

AU - Walker, R. J.

PY - 2012/6/4

Y1 - 2012/6/4

N2 - Plastic scintillators are widely used in industry, medicine, and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterize the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semiempirical formulation of Birks and a kB factor of (0.014±0.002) g MeV-1 cm-2 has been determined. Below that energy, the measured quenching factor falls more steeply than predicted by the Birks formalism.

AB - Plastic scintillators are widely used in industry, medicine, and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterize the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semiempirical formulation of Birks and a kB factor of (0.014±0.002) g MeV-1 cm-2 has been determined. Below that energy, the measured quenching factor falls more steeply than predicted by the Birks formalism.

UR - http://www.scopus.com/inward/record.url?scp=84862834670&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862834670&partnerID=8YFLogxK

U2 - 10.1103/PhysRevC.85.065801

DO - 10.1103/PhysRevC.85.065801

M3 - Article

AN - SCOPUS:84862834670

VL - 85

JO - Physical Review C - Nuclear Physics

JF - Physical Review C - Nuclear Physics

SN - 0556-2813

IS - 6

M1 - 065801

ER -

Reichhart L, Akimov DY, Araújo HM, Barnes EJ, Belov VA, Burenkov AA et al. Quenching factor for low-energy nuclear recoils in a plastic scintillator. Physical Review C - Nuclear Physics. 2012 Jun 4;85(6). 065801. https://doi.org/10.1103/PhysRevC.85.065801