TY - JOUR
T1 - Quenching of star formation from a lack of inflowing gas to galaxies
AU - Whitaker, Katherine E.
AU - Williams, Christina C.
AU - Mowla, Lamiya
AU - Spilker, Justin S.
AU - Toft, Sune
AU - Narayanan, Desika
AU - Pope, Alexandra
AU - Magdis, Georgios E.
AU - van Dokkum, Pieter G.
AU - Akhshik, Mohammad
AU - Bezanson, Rachel
AU - Brammer, Gabriel B.
AU - Leja, Joel
AU - Man, Allison
AU - Nelson, Erica J.
AU - Richard, Johan
AU - Pacifici, Camilla
AU - Sharon, Keren
AU - Valentino, Francesco
N1 - Funding Information:
Acknowledgements This paper makes use of ADS/JAO.ALMA 2018.1.00276.S and ADS/JAO. ALMA 2019.1.00227.S ALMA data. ALMA is a partnership of the European Southern Observatory (ESO; representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The NRAO is a facility of the NSF operated under cooperative agreement by Associated Universities. This work uses observations from the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS 5-26555. K.E.W. wishes to acknowledge funding from the Alfred P. Sloan Foundation, HST-GO-14622 and HST-GO-15663. C.C.W. acknowledges support from the NSF Astronomy and Astrophysics Fellowship grant AST-1701546 and from the NIRCam Development Contract NAS50210 from NASA Goddard Space Flight Center to the University of Arizona. S.T. acknowledges support from the ERC Consolidator Grant funding scheme (project ConTExt, grant no. 648179), F.V. from the Carlsberg Foundation Research Grant CF18-0388, and G.E.M. from the Villum Fonden research grant 13160. The Cosmic Dawn Center is funded by the Danish National Research Foundation under grant no. 140. C.P. is supported by the Canadian Space Agency under a contract with NRC Herzberg Astronomy and Astrophysics. M.A. acknowledges support from NASA under award no. 80NSSC19K1418. J.S.S. is a NHFP Hubble Fellow supported by NASA Hubble Fellowship grant no. HF2-51446 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, for NASA, under contract NAS5-26555. A.M. is supported by a Dunlap Fellowship at the Dunlap Institute for Astronomy & Astrophysics, funded through an endowment established by the David Dunlap family and the University of Toronto. D.N. acknowledges support from the NSF via AST-1908137.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2021/9/23
Y1 - 2021/9/23
N2 - Star formation in half of massive galaxies was quenched by the time the Universe was 3 billion years old1. Very low amounts of molecular gas seem to be responsible for this, at least in some cases2–7, although morphological gas stabilization, shock heating or activity associated with accretion onto a central supermassive black hole are invoked in other cases8–11. Recent studies of quenching by gas depletion have been based on upper limits that are insufficiently sensitive to determine this robustly2–7, or stacked emission with its problems of averaging8,9. Here we report 1.3 mm observations of dust emission from 6 strongly lensed galaxies where star formation has been quenched, with magnifications of up to a factor of 30. Four of the six galaxies are undetected in dust emission, with an estimated upper limit on the dust mass of 0.0001 times the stellar mass, and by proxy (assuming a Milky Way molecular gas-to-dust ratio) 0.01 times the stellar mass in molecular gas. This is two orders of magnitude less molecular gas per unit stellar mass than seen in star forming galaxies at similar redshifts12–14. It remains difficult to extrapolate from these small samples, but these observations establish that gas depletion is responsible for a cessation of star formation in some fraction of high-redshift galaxies.
AB - Star formation in half of massive galaxies was quenched by the time the Universe was 3 billion years old1. Very low amounts of molecular gas seem to be responsible for this, at least in some cases2–7, although morphological gas stabilization, shock heating or activity associated with accretion onto a central supermassive black hole are invoked in other cases8–11. Recent studies of quenching by gas depletion have been based on upper limits that are insufficiently sensitive to determine this robustly2–7, or stacked emission with its problems of averaging8,9. Here we report 1.3 mm observations of dust emission from 6 strongly lensed galaxies where star formation has been quenched, with magnifications of up to a factor of 30. Four of the six galaxies are undetected in dust emission, with an estimated upper limit on the dust mass of 0.0001 times the stellar mass, and by proxy (assuming a Milky Way molecular gas-to-dust ratio) 0.01 times the stellar mass in molecular gas. This is two orders of magnitude less molecular gas per unit stellar mass than seen in star forming galaxies at similar redshifts12–14. It remains difficult to extrapolate from these small samples, but these observations establish that gas depletion is responsible for a cessation of star formation in some fraction of high-redshift galaxies.
UR - http://www.scopus.com/inward/record.url?scp=85115414037&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115414037&partnerID=8YFLogxK
U2 - 10.1038/s41586-021-03806-7
DO - 10.1038/s41586-021-03806-7
M3 - Article
C2 - 34552255
AN - SCOPUS:85115414037
SN - 0028-0836
VL - 597
SP - 485
EP - 488
JO - Nature
JF - Nature
IS - 7877
ER -