Query suggestions in the absence of query logs

Sumit Bhatia, Debapriyo Majumdar, Prasenjit Mitra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

104 Scopus citations

Abstract

After an end-user has partially input a query, intelligent search engines can suggest possible completions of the partial query to help end-users quickly express their information needs. All major web-search engines and most proposed methods that suggest queries rely on search engine query logs to determine possible query suggestions. However, for customized search systems in the enterprise domain, intranet search, or personalized search such as email or desktop search or for infrequent queries, query logs are either not available or the user base and the number of past user queries is too small to learn appropriate models. We propose a probabilistic mechanism for generating query suggestions from the corpus without using query logs. We utilize the document corpus to extract a set of candidate phrases. As soon as a user starts typing a query, phrases that are highly correlated with the partial user query are selected as completions of the partial query and are offered as query suggestions. Our proposed approach is tested on a variety of datasets and is compared with state-of-the-art approaches. The experimental results clearly demonstrate the effectiveness of our approach in suggesting queries with higher quality.

Original languageEnglish (US)
Title of host publicationSIGIR'11 - Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery
Pages795-804
Number of pages10
ISBN (Print)9781450309349
DOIs
StatePublished - Jan 1 2011
Event34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011 - Beijing, China
Duration: Jul 24 2011Jul 28 2011

Publication series

NameSIGIR'11 - Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval

Other

Other34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011
CountryChina
CityBeijing
Period7/24/117/28/11

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint Dive into the research topics of 'Query suggestions in the absence of query logs'. Together they form a unique fingerprint.

Cite this