Radiation Brightening from Virus-like Particles

Irina B. Tsvetkova, Arathi Anil Sushma, Joseph Che Yen Wang, William L. Schaich, Bogdan Dragnea

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Concentration quenching is a well-known challenge in many fluorescence imaging applications. Here, we show that the optical emission from hundreds of chromophores confined onto the surface of a 28 nm diameter virus particle can be recovered under pulsed irradiation. We have found that as one increases the number of chromophores tightly bound to the virus surface, fluorescence quenching ensues at first, but when the number of chromophores per particle is nearing the maximum number of surface sites allowable, a sudden brightening of the emitted light and a shortening of the excited-state lifetime are observed. This radiation brightening occurs only under short pulse excitation; steady-state excitation is characterized by conventional concentration quenching for any number of chromophores per particle. The observed suppression of fluorescence quenching is consistent with efficient, collective relaxation at room temperature. Interestingly, radiation brightening disappears when the emitters' spatial and/or dynamic heterogeneity is increased, suggesting that the template structural properties may play a role that could be instrumental in developing virus-enabled imaging vectors that have optical properties qualitatively different than those of state-of-the-art biophotonic agents.

Original languageEnglish (US)
Pages (from-to)11401-11408
Number of pages8
JournalACS nano
Volume13
Issue number10
DOIs
StatePublished - Oct 22 2019

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Cite this

Tsvetkova, I. B., Anil Sushma, A., Wang, J. C. Y., Schaich, W. L., & Dragnea, B. (2019). Radiation Brightening from Virus-like Particles. ACS nano, 13(10), 11401-11408. https://doi.org/10.1021/acsnano.9b04786