Range-based obstructed nearest neighbor queries

Huaijie Zhu, Xiaochun Yang, Bin Wang, Wang Chien Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

In this paper, we study a novel variant of obstructed nearest neighbor queries, namely, range-based obstructed nearest neighbor (RONN) search. A natural generalization of continuous obstructed nearest-neighbor (CONN), an RONN query retrieves the obstructed nearest neighbor for every point in a specified range. To process RONN, we first propose a CONN-Based (CONNB) algorithm as our baseline, which reduces the RONN query into a range query and four CONN queries processed using an R-tree. To address the shortcomings of the CONNB algorithm, we then propose a new RONN by R-tree Filtering (RONN-RF) algorithm, which explores effective filtering, also using R-tree. Next, we propose a new index, called O-tree, dedicated for indexing objects in the obstructed space. The novelty of O-tree lies in the idea of dividing the obstructed space into nonobstructed subspaces, aiming to efficiently retrieve highly qualified candidates for RONN processing. We develop an O-tree construction algorithm and propose a space division scheme, called optimal obstacle balance (OOB) scheme, to address the tree balance problem. Accordingly, we propose an efficient algorithm, called RONN by O-tree Acceleration (RONN-OA), which exploits O-tree to accelerate query processing of RONN. In addition, we extend O-tree for indexing polygons. At last, we conduct a comprehensive performance evaluation using both real and synthetic datasets to validate our ideas and the proposed algorithms. The experimental result shows that the RONN-OA algorithm outperforms the two R-tree based algorithms significantly. Moreover, we show that the OOB scheme achieves the best tree balance in O-tree and outperforms two baseline schemes.

Original languageEnglish (US)
Title of host publicationSIGMOD 2016 - Proceedings of the 2016 International Conference on Management of Data
PublisherAssociation for Computing Machinery
Pages2053-2068
Number of pages16
ISBN (Electronic)9781450335317
DOIs
StatePublished - Jun 26 2016
Event2016 ACM SIGMOD International Conference on Management of Data, SIGMOD 2016 - San Francisco, United States
Duration: Jun 26 2016Jul 1 2016

Publication series

NameProceedings of the ACM SIGMOD International Conference on Management of Data
Volume26-June-2016
ISSN (Print)0730-8078

Other

Other2016 ACM SIGMOD International Conference on Management of Data, SIGMOD 2016
CountryUnited States
CitySan Francisco
Period6/26/167/1/16

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint Dive into the research topics of 'Range-based obstructed nearest neighbor queries'. Together they form a unique fingerprint.

  • Cite this

    Zhu, H., Yang, X., Wang, B., & Lee, W. C. (2016). Range-based obstructed nearest neighbor queries. In SIGMOD 2016 - Proceedings of the 2016 International Conference on Management of Data (pp. 2053-2068). (Proceedings of the ACM SIGMOD International Conference on Management of Data; Vol. 26-June-2016). Association for Computing Machinery. https://doi.org/10.1145/2882903.2915234