Rapid, high-throughput identification of anthrax-causing and emetic Bacillus cereus group genome assemblies via BTyper, a computational tool for virulencebased classification of Bacillus cereus group isolates by using nucleotide sequencing data

Laura M. Carroll, Jasna Kovac, Rachel A. Miller, Martin Wiedmann

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-γ-D-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMiner.

Original languageEnglish (US)
Article numbere01096-17
JournalApplied and environmental microbiology
Volume83
Issue number17
DOIs
StatePublished - Sep 1 2017

Fingerprint

anthrax
emetics
Emetics
genome assembly
Anthrax
Bacillus cereus
Nucleotides
genome
nucleotides
Genome
taxonomy
gene
Genes
genes
toxin
Capsules
public economics
food
Multilocus Sequence Typing
hyaluronic acid

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Food Science
  • Applied Microbiology and Biotechnology
  • Ecology

Cite this

@article{7b4c96d6cd724f5caca37534baaf5316,
title = "Rapid, high-throughput identification of anthrax-causing and emetic Bacillus cereus group genome assemblies via BTyper, a computational tool for virulencebased classification of Bacillus cereus group isolates by using nucleotide sequencing data",
abstract = "The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-γ-D-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMiner.",
author = "Carroll, {Laura M.} and Jasna Kovac and Miller, {Rachel A.} and Martin Wiedmann",
year = "2017",
month = "9",
day = "1",
doi = "10.1128/AEM.01096-17",
language = "English (US)",
volume = "83",
journal = "Applied and Environmental Microbiology",
issn = "0099-2240",
publisher = "American Society for Microbiology",
number = "17",

}

TY - JOUR

T1 - Rapid, high-throughput identification of anthrax-causing and emetic Bacillus cereus group genome assemblies via BTyper, a computational tool for virulencebased classification of Bacillus cereus group isolates by using nucleotide sequencing data

AU - Carroll, Laura M.

AU - Kovac, Jasna

AU - Miller, Rachel A.

AU - Wiedmann, Martin

PY - 2017/9/1

Y1 - 2017/9/1

N2 - The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-γ-D-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMiner.

AB - The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-γ-D-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMiner.

UR - http://www.scopus.com/inward/record.url?scp=85027466711&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027466711&partnerID=8YFLogxK

U2 - 10.1128/AEM.01096-17

DO - 10.1128/AEM.01096-17

M3 - Article

C2 - 28625989

AN - SCOPUS:85027466711

VL - 83

JO - Applied and Environmental Microbiology

JF - Applied and Environmental Microbiology

SN - 0099-2240

IS - 17

M1 - e01096-17

ER -