Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors

Yu Chuan Lin, Bhakti Jariwala, Brian M. Bersch, Ke Xu, Yifan Nie, Baoming Wang, Sarah M. Eichfeld, Xiaotian Zhang, Tanushree Holme Choudhury, Yi Pan, Rafik Addou, Christopher M. Smyth, Jun Li, Kehao Zhang, Md Amanul Haque, Stefan Fölsch, Randall M. Feenstra, Robert M. Wallace, Kyeongjae Cho, Susan K. Fullerton-ShireyJoan Marie Redwing, Joshua Alexander Robinson

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe 2 ) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe 2 /sapphire exhibit ambipolar behavior with excellent on/off ratios (∼10 7 ), high current density (1-10 μA·μm -1 ), and good field-effect transistor mobility (∼30 cm 2 ·V -1 ·s -1 ) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.

Original languageEnglish (US)
Pages (from-to)965-975
Number of pages11
JournalACS Nano
Volume12
Issue number2
DOIs
StatePublished - Feb 27 2018

Fingerprint

Electronic scales
Transition metals
grade
transition metals
Semiconductor materials
electronics
Aluminum Oxide
Sapphire
sapphire
Substrates
Organic Chemicals
Tungsten
Carrier transport
Organic chemicals
Field effect transistors
Epitaxial growth
Optoelectronic devices
epitaxy
metalorganic chemical vapor deposition
high current

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Cite this

Lin, Y. C., Jariwala, B., Bersch, B. M., Xu, K., Nie, Y., Wang, B., ... Robinson, J. A. (2018). Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. ACS Nano, 12(2), 965-975. https://doi.org/10.1021/acsnano.7b07059
Lin, Yu Chuan ; Jariwala, Bhakti ; Bersch, Brian M. ; Xu, Ke ; Nie, Yifan ; Wang, Baoming ; Eichfeld, Sarah M. ; Zhang, Xiaotian ; Choudhury, Tanushree Holme ; Pan, Yi ; Addou, Rafik ; Smyth, Christopher M. ; Li, Jun ; Zhang, Kehao ; Haque, Md Amanul ; Fölsch, Stefan ; Feenstra, Randall M. ; Wallace, Robert M. ; Cho, Kyeongjae ; Fullerton-Shirey, Susan K. ; Redwing, Joan Marie ; Robinson, Joshua Alexander. / Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. In: ACS Nano. 2018 ; Vol. 12, No. 2. pp. 965-975.
@article{32b90557b0004127b971a8aca565b34f,
title = "Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors",
abstract = "Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe 2 ) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe 2 /sapphire exhibit ambipolar behavior with excellent on/off ratios (∼10 7 ), high current density (1-10 μA·μm -1 ), and good field-effect transistor mobility (∼30 cm 2 ·V -1 ·s -1 ) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.",
author = "Lin, {Yu Chuan} and Bhakti Jariwala and Bersch, {Brian M.} and Ke Xu and Yifan Nie and Baoming Wang and Eichfeld, {Sarah M.} and Xiaotian Zhang and Choudhury, {Tanushree Holme} and Yi Pan and Rafik Addou and Smyth, {Christopher M.} and Jun Li and Kehao Zhang and Haque, {Md Amanul} and Stefan F{\"o}lsch and Feenstra, {Randall M.} and Wallace, {Robert M.} and Kyeongjae Cho and Fullerton-Shirey, {Susan K.} and Redwing, {Joan Marie} and Robinson, {Joshua Alexander}",
year = "2018",
month = "2",
day = "27",
doi = "10.1021/acsnano.7b07059",
language = "English (US)",
volume = "12",
pages = "965--975",
journal = "ACS Nano",
issn = "1936-0851",
publisher = "American Chemical Society",
number = "2",

}

Lin, YC, Jariwala, B, Bersch, BM, Xu, K, Nie, Y, Wang, B, Eichfeld, SM, Zhang, X, Choudhury, TH, Pan, Y, Addou, R, Smyth, CM, Li, J, Zhang, K, Haque, MA, Fölsch, S, Feenstra, RM, Wallace, RM, Cho, K, Fullerton-Shirey, SK, Redwing, JM & Robinson, JA 2018, 'Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors', ACS Nano, vol. 12, no. 2, pp. 965-975. https://doi.org/10.1021/acsnano.7b07059

Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. / Lin, Yu Chuan; Jariwala, Bhakti; Bersch, Brian M.; Xu, Ke; Nie, Yifan; Wang, Baoming; Eichfeld, Sarah M.; Zhang, Xiaotian; Choudhury, Tanushree Holme; Pan, Yi; Addou, Rafik; Smyth, Christopher M.; Li, Jun; Zhang, Kehao; Haque, Md Amanul; Fölsch, Stefan; Feenstra, Randall M.; Wallace, Robert M.; Cho, Kyeongjae; Fullerton-Shirey, Susan K.; Redwing, Joan Marie; Robinson, Joshua Alexander.

In: ACS Nano, Vol. 12, No. 2, 27.02.2018, p. 965-975.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors

AU - Lin, Yu Chuan

AU - Jariwala, Bhakti

AU - Bersch, Brian M.

AU - Xu, Ke

AU - Nie, Yifan

AU - Wang, Baoming

AU - Eichfeld, Sarah M.

AU - Zhang, Xiaotian

AU - Choudhury, Tanushree Holme

AU - Pan, Yi

AU - Addou, Rafik

AU - Smyth, Christopher M.

AU - Li, Jun

AU - Zhang, Kehao

AU - Haque, Md Amanul

AU - Fölsch, Stefan

AU - Feenstra, Randall M.

AU - Wallace, Robert M.

AU - Cho, Kyeongjae

AU - Fullerton-Shirey, Susan K.

AU - Redwing, Joan Marie

AU - Robinson, Joshua Alexander

PY - 2018/2/27

Y1 - 2018/2/27

N2 - Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe 2 ) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe 2 /sapphire exhibit ambipolar behavior with excellent on/off ratios (∼10 7 ), high current density (1-10 μA·μm -1 ), and good field-effect transistor mobility (∼30 cm 2 ·V -1 ·s -1 ) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.

AB - Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe 2 ) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe 2 /sapphire exhibit ambipolar behavior with excellent on/off ratios (∼10 7 ), high current density (1-10 μA·μm -1 ), and good field-effect transistor mobility (∼30 cm 2 ·V -1 ·s -1 ) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.

UR - http://www.scopus.com/inward/record.url?scp=85042116564&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85042116564&partnerID=8YFLogxK

U2 - 10.1021/acsnano.7b07059

DO - 10.1021/acsnano.7b07059

M3 - Article

C2 - 29360349

AN - SCOPUS:85042116564

VL - 12

SP - 965

EP - 975

JO - ACS Nano

JF - ACS Nano

SN - 1936-0851

IS - 2

ER -

Lin YC, Jariwala B, Bersch BM, Xu K, Nie Y, Wang B et al. Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. ACS Nano. 2018 Feb 27;12(2):965-975. https://doi.org/10.1021/acsnano.7b07059