ReaxFF: A reactive force field for hydrocarbons

Adri C.T. Van Duin, Siddharth Dasgupta, Francois Lorant, William A. Goddard

Research output: Contribution to journalArticle

2585 Scopus citations

Abstract

To make practical the molecular dynamics simulation of large scale reactive chemical systems (1000s of atoms), we developed ReaxFF, a force field for reactive systems. ReaxFF uses a general relationship between bond distance and bond order on one hand and between bond order and bond energy on the other hand that leads to proper dissociation of bonds to separated atoms. Other valence terms present in the force field (angle and torsion) are defined in terms of the same bond orders so that all these terms go to zero smoothly as bonds break. In addition, ReaxFF has Coulomb and Morse (van der Waals) potentials to describe nonbond interactions between all atoms (no exclusions). These nonbond interactions are shielded at short range so that the Coulomb and van der Waals interactions become constant as Rij → 0. We report here the ReaxFF for hydrocarbons. The parameters were derived from quantum chemical calculations on bond dissociation and reactions of small molecules plus heat of formation and geometry data for a number of stable hydrocarbon compounds. We find that the ReaxFF provides a good description of these data. Generally, the results are of an accuracy similar or better than PM3, while ReaxFF is about 100 times faster. In turn, the PM3 is about 100 times faster than the QC calculations. Thus, with ReaxFF we hope to be able to study complex reactions in hydrocarbons.

Original languageEnglish (US)
Pages (from-to)9396-9409
Number of pages14
JournalJournal of Physical Chemistry A
Volume105
Issue number41
DOIs
StatePublished - Oct 18 2001

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'ReaxFF: A reactive force field for hydrocarbons'. Together they form a unique fingerprint.

  • Cite this