Recent development of flexible and stretchable antennas for bio-integrated electronics

Jia Zhu, Huanyu Cheng

Research output: Contribution to journalReview article

7 Scopus citations

Abstract

Wireless technology plays an important role in data communication and power transmission, which has greatly boosted the development of flexible and stretchable electronics for biomedical applications and beyond. As a key component in wireless technology, flexible and stretchable antennas need to be flexible and stretchable, enabled by the efforts with new materials or novel integration approaches with structural designs. Besides replacing the conventional rigid substrates with textile or elastomeric ones, flexible and stretchable conductive materials also need to be used for the radiation parts, including conductive textiles, liquid metals, elastomeric composites embedding conductive fillers, and stretchable structures from conventional metals. As the microwave performance of the antenna (e.g., resonance frequency, radiation pattern, and radiation efficiency) strongly depend on the mechanical deformations, the new materials and novel structures need to be carefully designed. Despite the rapid progress in the burgeoning field of flexible and stretchable antennas, plenty of challenges, as well as opportunities, still exist to achieve miniaturized antennas with a stable or tunable performance at a low cost for bio-integrated electronics.

Original languageEnglish (US)
Article number4364
JournalSensors (Switzerland)
Volume18
Issue number12
DOIs
StatePublished - Dec 2018

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Cite this