Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria

Maher Abou Hachem, Joakim M. Andersen, Rodolphe Barrangou, Marie S. Moller, Folmer Fredslund, Avishek Majumder, Morten Ejby, Sampo J. Lahtinen, Susanne Jacobsen, Leila Lo Leggio, Yong Jun Goh, Todd R. Klaenhammer, Birte Svensson

Research output: Contribution to journalReview articlepeer-review

14 Scopus citations

Abstract

In recent years, a plethora of studies have demonstrated the paramount physiological importance of the gut microbiota on various aspects of human health and development. Particular focus has been set on probiotic members of this community, the best studied of which are assigned into the Lactobacillus and Bifidobacterium genera. Effects such as pathogen exclusion, alleviation of inflammation and allergies, colon cancer, and other bowel disorders are attributed to the activity of probiotic bacteria, which selectively ferment prebiotics comprising mainly non-digestible oligosaccharides. Thus, glycan metabolism is an important attribute of probiotic action and a factor influencing the composition of the gut microbiota. In the quest to understand the molecular mechanism of this selectivity for certain glycans, we have explored the routes of uptake and utilization of a variety of oligosaccharides differing in size, composition, and glycosidic linkages. A combination of "omics" technologies bioinformatics, enzymology and protein characterization proved fruitful in elucidating the protein transport and catabolic machinery conferring the utilization of glucosides, galactosides, and xylosides in the two clinically validated probiotic strains Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bl-04. Importantly, we have been able to identify and in some cases validate the specificity of several transport systems, which are otherwise poorly annotated. Further, we have demonstrated for the first time that non-naturally occurring tri- and tetra-saccharides are internalized and efficiently utilized by probiotic bacteria in some cases better than well-established natural prebiotics. Selected highlights of these data are presented, emphasising the importance and the diversity of oligosaccharide transport in probiotic bacteria.

Original languageEnglish (US)
Pages (from-to)226-235
Number of pages10
JournalBiocatalysis and Biotransformation
Volume31
Issue number4
DOIs
StatePublished - Aug 1 2013

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Catalysis
  • Biochemistry

Fingerprint Dive into the research topics of 'Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria'. Together they form a unique fingerprint.

Cite this