Recent trends in the near-surface climatology of the northern North American Great Plains

Gabriel T. Bromley, Tobias Gerken, Andreas F. Prein, Paul C. Stoy

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

We examined climate trends in the northern North American Great Plains (NNAGP) from 1970 to 2015, a period that aligns with widespread land-use changes in this globally important agricultural region. Trends were calculated from the Climatic Research Unit (CRU) and other climate datasets using a linear regression model that accounts for temporal autocorrelation. The NNAGP warmed on an annual basis, with the largest change occurring in winter (DJF) at 0.48C decade21. January in particular warmed at nearly 0.98C decade21. The NNAGP cooled by 20.188C decade21 during May and June, nearly the opposite of global warming trends during the study period. The atmospheric vapor pressure deficit (VPD), which can limit crop growth, decreased in excess of 20.4 hPa decade21 during climatological summer in the southeastern part of the study domain. Precipitation P increased in the eastern portion of the NNAGP during all seasons except fall and increased during May and June in excess of 8 mm decade21. Climate trends in the NNAGP largely followed global trends except during the early warm season (May and June) during which 2-m air temperature Tair became cooler, VPD lower, and P greater across large parts of the study region. These changes are consistent with observed agricultural intensification during the study period, namely the reduction of summer fallow and expansion of agricultural land use. Global climate model simulations indicate that observed Tair trends cannot be explained by natural climate variability. However, further climate attribution experiments are necessary to understand if observed changes are caused by increased agricultural intensity or other factors.

Original languageEnglish (US)
Pages (from-to)461-475
Number of pages15
JournalJournal of Climate
Volume33
Issue number2
DOIs
StatePublished - Jan 15 2020

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint Dive into the research topics of 'Recent trends in the near-surface climatology of the northern North American Great Plains'. Together they form a unique fingerprint.

  • Cite this